1,540 research outputs found

    Aquifer potential assessment in termites manifested locales using geo-electrical and surface hydraulic measurement parameters

    Full text link
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. In some parts of tropical Africa, termite mound locations are traditionally used to site groundwater structures mainly in the form of hand-dug wells with high success rates. However, the scientific rationale behind the use of mounds as prospective sites for locating groundwater structures has not been thoroughly investigated. In this paper, locations and structural features of termite mounds were mapped with the aim of determining the aquifer potential beneath termite mounds and comparing the same with adjacent areas, 10 m away. Soil and species sampling, field surveys and laboratory analyses to obtain data on physical, hydraulic and geo-electrical parameters from termite mounds and adjacent control areas followed. The physical and hydraulic measurements demonstrated relatively higher infiltration rates and lower soil water content on mound soils compared with the surrounding areas. To assess the aquifer potential, vertical electrical soundings were conducted on 28 termite mounds sites and adjacent control areas. Three (3) important parameters were assessed to compute potential weights for each Vertical Electrical Sounding (VES) point: Depth to bedrock, aquifer layer resistivity and fresh/fractured bedrock resistivity. These weights were then compared between those of termite mound sites and those from control areas. The result revealed that about 43% of mound sites have greater aquifer potential compared to the surrounding areas, whereas 28.5% of mounds have equal and lower potentials compared with the surrounding areas. The study concludes that termite mounds locations are suitable spots for groundwater prospecting owing to the deeper regolith layer beneath them which suggests that termites either have the ability to locate places with a deeper weathering horizon or are themselves agents of biological weathering. Further studies to check how representative our study area is of other areas with similar termite activities are recommended

    Groundwater augmentation through the site selection of floodwater spreading using a data mining approach (case study: Mashhad Plain, Iran)

    Full text link
    © 2018 by the authors. It is a well-known fact that sustainable development goals are difficult to achieve without a proper water resources management strategy. This study tries to implement some state-of-the-art statistical and data mining models i.e., weights-of-evidence (WoE), boosted regression trees (BRT), and classification and regression tree (CART) to identify suitable areas for artificial recharge through floodwater spreading (FWS). At first, suitable areas for the FWS project were identified in a basin in north-eastern Iran based on the national guidelines and a literature survey. Using the same methodology, an identical number of FWS unsuitable areas were also determined. Afterward, a set of different FWS conditioning factors were selected for modeling FWS suitability. The models were applied using 70% of the suitable and unsuitable locations and validated with the rest of the input data (i.e., 30%). Finally, a receiver operating characteristics (ROC) curve was plotted to compare the produced FWS suitability maps. The findings depicted acceptable performance of the BRT, CART, and WoE for FWS suitability mapping with an area under the ROC curves of 92, 87.5, and 81.6%, respectively. Among the considered variables, transmissivity, distance from rivers, aquifer thickness, and electrical conductivity were determined as the most important contributors in the modeling. FWS suitability maps produced by the proposed method in this study could be used as a guideline for water resource managers to control flood damage and obtain new sources of groundwater. This methodology could be easily replicated to produce FWS suitability maps in other regions with similar hydrogeological conditions

    APG: A novel Python-based ArcGIS toolbox to generate absence-datasets for geospatial studies

    Full text link
    One important step in binary modeling of environmental problems is the generation of absence-datasets that are traditionally generated by random sampling and can undermine the quality of outputs. To solve this problem, this study develops the Absence Point Generation (APG) toolbox which is a Python-based ArcGIS toolbox for automated construction of absence-datasets for geospatial studies. The APG employs a frequency ratio analysis of four commonly used and important driving factors such as altitude, slope degree, topographic wetness index, and distance from rivers, and considers the presence locations buffer and density layers to define the low potential or susceptibility zones where absence-datasets are generated. To test the APG toolbox, we applied two benchmark algorithms of random forest (RF) and boosted regression trees (BRT) in a case study to investigate groundwater potential using three absence datasets i.e., the APG, random, and selection of absence samples (SAS) toolbox. The BRT-APG and RF-APG had the area under receiver operating curve (AUC) values of 0.947 and 0.942, while BRT and RF had weaker performances with the SAS and Random datasets. This effect resulted in AUC improvements for BRT and RF by 7.2, and 9.7% from the Random dataset, and AUC improvements for BRT and RF by 6.1, and 5.4% from the SAS dataset, respectively. The APG also impacted the importance of the input factors and the pattern of the groundwater potential maps, which proves the importance of absence points in environmental binary issues. The proposed APG toolbox could be easily applied in other environmental hazards such as landslides, floods, and gully erosion, and land subsidence

    Geohazards analysis of Pisa tunnel in a fractured incompetent rocks in Zagros Mountains, Iran.

    Get PDF
    The Pisa 2 tunnel with 740 m in length and 20° N trend is located along the Kazerun fault zone in Simply Folded Belt of Zagros, Iran. This tunnel has been excavated in the fractured incompetent marl layers with high expansive pressure of up to 2 kg/cm2. In this study, the geological hazards along the tunnel have been recognized and categorized. This study revealed that, in the long-term usage of the tunnel, the lining did not endure against the loading and the secondary leakages. It is mainly attributed due to the non-efficiencies of drainage and isolation systems in the tunnel site. Therefore, it caused asphalt damage, drainage damage, and wall distortion. FLAC3D software has been used in this research. We conducted various analyses for pre-excavation stress states, syn-excavation, and post-excavation strain states. The results showed no indication of instability and critical deformations during the excavation time. It also revealed that due to the non-efficiencies of drainage and isolation systems against secondary leakages and consequently marl expansion, the volumetric and shear strains (i.e., expansions and displacements) have exceeded from the critical states of strain along the tunnel. For various remedy purpose, this paper attempted several measures that can be taken in order to modify the drainage and isolation systems along the tunnel area. The reconstruction of drainage systems with suitable reinforced concrete and adequate slope has been proposed. The width of channel and isolation of backside of lining and implementation of multi-order outlets (i.e., backside of lining) for draining of groundwater into where the main drainage systems are located in the tunnel gallery were suggested

    Parametric Study on Dimensional Control of ZnO Nanowalls and Nanowires by Electrochemical Deposition

    Get PDF
    A simple electrochemical deposition technique is used to synthesize both two-dimensional (nanowall) and one-dimensional (nanowire) ZnO nanostructures on indium-tin-oxide-coated glass substrates at 70°C. By fine-tuning the deposition conditions, particularly the initial Zn(NO3)2·6H2O electrolyte concentration, the mean ledge thickness of the nanowalls (50–100 nm) and the average diameter of the nanowires (50–120 nm) can be easily varied. The KCl supporting electrolyte used in the electrodeposition also has a pronounced effect on the formation of the nanowalls, due to the adsorption of Cl− ions on the preferred (0001) growth plane of ZnO and thereby redirecting growth on the (100) and (20) planes. Furthermore, evolution from the formation of ZnO nanowalls to formation of nanowires is observed as the KCl concentration is reduced in the electrolyte. The crystalline properties and growth directions of the as-synthesized ZnO nanostructures are studied in details by glancing-incidence X-ray diffraction and transmission electron microscopy

    Particulate matter Air Pollution induces hypermethylation of the p16 promoter Via a mitochondrial ROS-JNK-DNMT1 pathway

    Get PDF
    Exposure of human populations to chronically elevated levels of ambient particulate matter air pollution < 2.5 μm in diameter (PM2.5) has been associated with an increase in lung cancer incidence. Over 70% of lung cancer cell lines exhibit promoter methylation of the tumor suppressor p16, an epigenetic modification that reduces its expression. We exposed mice to concentrated ambient PM2.5 via inhalation, 8 hours daily for 3 weeks and exposed primary murine alveolar epithelial cells to daily doses of fine urban PM (5 µg/cm2). In both mice and alveolar epithelial cells, PM exposure increased ROS production, expression of the DNA methyltransferase 1 (DNMT1), and methylation of the p16 promoter. In alveolar epithelial cells, increased transcription of DNMT1 and methylation of the p16 promoter were inhibited by a mitochondrially targeted antioxidant and a JNK inhibitor. These findings provide a potential mechanism by which PM exposure increases the risk of lung cancer

    An unusual case of an isolated capitellar fracture of the right elbow in a child: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Although elbow fractures have a high incidence in the pediatric population, fractures of the capitellum are almost exclusively observed in individuals older than 12 years of age. Due to their rarity in children, reports with large numbers of cases are lacking in the literature and the surgical treatment options are poorly defined.</p> <p>Case presentation</p> <p>We present the case of an 11-year-old Portuguese girl with a displaced fracture of the capitellum of the right elbow, a typical Hahn-Steinthal or Type 1 fracture, which was followed for one year. The treatment and outcome of this fracture are described. Our patient underwent an open reduction and internal fixation with two cannulated screws. There were no complications and normal elbow function was recovered.</p> <p>Conclusion</p> <p>The authors believe that cannulated screw fixation is a reliable method of treatment for Type 1 capitellar fracture in children because it enables good interfragmentary compression, early mobilization, faster functional elbow recovery and implant removal is rarely necessary.</p

    A mutant O-GlcNAcase enriches Drosophila developmental regulators

    Get PDF
    YesProtein O-GlcNAcylation is a reversible post-translational modification of serines/threonines on nucleocytoplasmic proteins. It is cycled by the enzymes O-GlcNAc transferase (OGT) and O-GlcNAc hydrolase (O-GlcNAcase or OGA). Genetic approaches in model organisms have revealed that protein O-GlcNAcylation is essential for early embryogenesis. Drosophila melanogaster OGT/supersex combs (sxc) is a polycomb gene, null mutants of which display homeotic transformations and die at the pharate adult stage. However, the identities of the O-GlcNAcylated proteins involved, and the underlying mechanisms linking these phenotypes to embryonic development, are poorly understood. Identification of O-GlcNAcylated proteins from biological samples is hampered by the low stoichiometry of this modification and limited enrichment tools. Using a catalytically inactive bacterial O-GlcNAcase mutant as a substrate trap, we have enriched the O-GlcNAc proteome of the developing Drosophila embryo, identifying, amongst others, known regulators of Hox genes as candidate conveyors of OGT function during embryonic development.Wellcome Trust Investigator Award (110061); MRC grant (MC_UU_12016/5); and Royal Society Research Grant

    Automotive Industry Response to its Global QMS Standard ISO/TS-16949

    Get PDF
    With increasing globalization, the intense competition and customer-pressure have spurred many producers from developing/ emerging countries to adopt the best management and organizational practices. The quality issues are paramount for automotive manufacturing. The multiplicity of Quality Management System (QMS) Standards prevalent till the 1990s finally gave way to development of a harmonized automotive industry-specific QMS, namely ISO/TS-16949. This paper analyzes the major factors motivating firms to adopt this Standard: its quality signaling function, especially in international business, and facilitative role in moving up the supply chain. We investigate the inter-national and inter-regional concentration of ISO/TS-16949 certificates and relate those changes to the automotive industry dynamics. Among the top certifying nations - China, India and Brazil included - these certificates and ‘cars and commercial vehicles’ produced are highly correlated. A moderate-to-high worldwide growth of this certification is probable in near future with its gaining popularity among Tier-2 suppliers and for two/ three-wheeler automotive production. The Indian evidence indicates a sizeable proportion of car and commercial vehicle plants being ISO/TS-16949 certified and a high certification incidence among large and medium-large auto component firms. We suggest the creation of a Centre to encourage and prepare SMEs and provide financial assistance for ISO/TS-16949 certification

    Craniofacial surgery for nonmelanoma skin malignancy: Report of an international collaborative study

    Get PDF
    AbstractBackground.This study examined the efficacy of craniofacial surgery (CFS) in treating locally advanced nonmelanoma skin cancer (NMSC).Methods.One hundred twenty patients who underwent CFS for NMSC were identified from 17 participating institutions. Patient, tumor, and treatment information was analyzed for prognostic impact on survival.Results.Surgical margins were negative in 74%, close in 3%, and involved in 23% of patients. Complications occurred in 35% of patients, half of which were local wound problems. Operative mortality was 4%. Median follow‐up interval after CFS was 27 months. The 5‐year overall survival (OS), disease‐specific survival (DSS), and recurrence‐free survival (RFS) rates were 64%, 75%, and 60%, respectively. Squamous cell histology, brain invasion, and positive resection margins independently predicted worse OS, DSS, and RFS.Conclusion.CFS is an effective treatment for patients with NMSC invading the skull base. Histology, extent of disease, and resection margins are the most significant predictors of outcome. © 2007 Wiley Periodicals, Inc. Head Neck, 200
    corecore