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Abstract 19 

 20 

Protein O-GlcNAcylation is a reversible post-translational modification of serines/threonines on 21 

nucleocytoplasmic proteins. It is cycled by the enzymes O-GlcNAc transferase (OGT) and O-GlcNAc hydrolase 22 

(O-GlcNAcase or OGA). Genetic approaches in model organisms have revealed that protein O-GlcNAcylation is 23 

essential for early embryogenesis. Drosophila melanogaster OGT/supersex combs (sxc) is a polycomb gene, 24 

null mutants of which display homeotic transformations and die at the pharate adult stage. However, the identities 25 

of the O-GlcNAcylated proteins involved, and the underlying mechanisms linking these phenotypes to embryonic 26 

development, are poorly understood. Identification of O-GlcNAcylated proteins from biological samples is 27 

hampered by the low stoichiometry of this modification and limited enrichment tools. Using a catalytically inactive 28 

bacterial O-GlcNAcase mutant as a substrate trap, we have enriched the O-GlcNAc proteome of the developing 29 

Drosophila embryo, identifying, amongst others, known regulators of Hox genes as candidate conveyors of OGT 30 

function during embryonic development. 31 

  32 
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Introduction  33 

 34 

O-GlcNAcylation, the addition of a single O-linked -N-acetylglucosamine (O-GlcNAc) to serine or threonine 35 

residues on target proteins, is a post-translational modification of nucleocytoplasmic proteins regulated by two 36 

enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA)1. The donor substrate for protein O-37 

GlcNAcylation is UDP-GlcNAc, produced from the glycolytic metabolite fructose-6-phosphate through the 38 

hexosamine biosynthetic pathway. Protein O-GlcNAcylation is a dynamic and reversible modification and is 39 

responsive to alterations in nutrient status and cellular stimuli1 and has been implicated in a broad range of 40 

cellular process including gene expression, protein trafficking and degradation, stress response1 and 41 

autophagy2. Alterations in tissue specific protein O-GlcNAcylation profiles have been linked to a number of 42 

human pathologies including diabetes, cancer, cardiovascular disease and neurodegenerative disorders1. In 43 

addition, using genetic approaches, it has been demonstrated that OGT, and by extension, protein O-44 

GlcNAcylation, has a critical role in embryonic development in animals3-6, although the mechanisms 45 

underpinning this remain largely unclear. 46 

 47 

An attractive model organism to begin to dissect the links between protein O-GlcNAcylation and metazoan 48 

development is the fruit fly Drosophila melanogaster. Flies that lack zygotic expression of OGT/sxc, but retain 49 

maternally contributed OGT protein and transcripts, die at the late pupal pharate adult stage with distinct 50 

homeotic transformations3. Flies lacking both zygotic and maternal OGT/sxc arrest development at the end of 51 

embryogenesis and show homeotic transformations in the embryonic cuticle3. Studies employing ChIP 52 

experiments have shown that O-GlcNAc is highly enriched at polycomb responsive elements (PREs) in Hox and 53 

other gene clusters in Drosophila7,8. The transcription factor Polyhomeotic (Ph) is a polycomb group protein 54 

known to be O-GlcNAcylated7. It has been shown that O-GlcNAcylation of Ph prevents its aggregation, and is 55 

required for the formation of functional, ordered assemblies of the protein9. OGT/sxc null mutants recapitulate 56 

some of the developmental phenotypes of Ph null mutants10. Other studies in flies have described the association 57 

of O-GlcNAc with cellular processes like glucose-insulin homeostasis11, circadian rhythm12-14, temperature stress 58 

during development15, FGF signaling16 and autophagy17. It is therefore clear that protein O-GlcNAcylation is 59 

involved in several processes in the fly in addition to Ph-dependent Hox gene repression. Our discovery that 60 
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protein O-GlcNAcylation is dynamic during Drosophila embryogenesis18 led us to pursue the proteomics-based 61 

identification of the modified proteins to aid the understanding of the mechanisms responsible for the OGT/sxc 62 

null phenotypes. While many proteomics studies have focused on the identification of O-GlcNAcylated proteins 63 

in mammalian cells and tissues, there is only a single study reporting O-GlcNAcylated proteins from Drosophila 64 

S2 cells with no site assignments19.  65 

 66 

Identification of native O-GlcNAcylated proteins by mass spectrometry is hampered by the fact that the O-GlcNAc 67 

moiety is labile and lost during standard collision induced dissociation (CID) peptide backbone fragmentation20. 68 

Additionally, given the sub-stoichiometric nature of O-GlcNAc, enrichment of modified proteins is required before 69 

they can be identified using mass spectrometry. Derivatization of modified substrates by BEMAD (β-elimination 70 

followed by Michael addition of DTT) and chemoenzymatic/metabolic labeling approaches have been used for 71 

the enrichment/site mapping of O-GlcNAcylated proteins (reviewed by 20). With the advent of electron transfer 72 

dissociation (ETD) fragmentation, in which O-GlcNAc is not labile20, strategies for the capture of native O-73 

GlcNAcylated proteins/peptides, such as lectin weak affinity chromatography using wheat germ agglutinin 74 

(WGA)21,22 or immunoprecipitation with the anti-O-GlcNAc antibody CTD110.623, have been employed for site 75 

mapping O-GlcNAcylated substrates. There are however, a number of limitations associated with these 76 

enrichment methods. In addition to O-GlcNAc, O-phosphate groups and O-glycans are also susceptible to 77 

BEMAD and rigorous optimization of reaction conditions and the use of appropriate controls such as 78 

phosphatase treatment are required to eliminate false positive identifications24. This is also true of 79 

chemoenzymatic and metabolic labeling methods, which can lead to the derivatization and enrichment of off-80 

target glycans and other chemical groups. The drawback of using WGA affinity chromatography is its millimolar 81 

affinity for GlcNAc20-22. Although possessing much improved affinity for O-GlcNAc, the anti-O-GlcNAc antibody 82 

CTD 110.6, like WGA, has been shown to recognize terminal GlcNAc residues in other glycans25,26, making it 83 

somewhat non-specific as a bait. Additionally, given that it is raised against a specific immunogen from the C-84 

terminal domain of RNA pol II27, it is possible that regardless of its specificity, CTD 110.6 does not recognize all 85 

O-GlcNAc sites. There is thus a need for novel strategies for the native enrichment of O-GlcNAcylated 86 

proteins/peptides.  87 

 88 
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We previously observed that a bacterial orthologue of the eukaryotic OGAs, Clostridium perfringens NagJ 89 

(CpOGA), shares 51% sequence similarity with human OGA (hOGA) and possesses remarkable catalytic activity 90 

on human O-GlcNAcylated proteins28. We recently demonstrated that an inactive mutant of this enzyme 91 

(CpOGAD298N), which retains the ability to bind to O-GlcNAcylated peptides (Fig. 1a) with affinities down to the 92 

nM range, could be used for the detection of O-GlcNAc proteins18. Here, we demonstrate that CpOGAD298N is a 93 

powerful new tool for the enrichment of O-GlcNAcylated proteins from Drosophila embryos, and use mass 94 

spectrometry to identify the first O-GlcNAc proteome associated with embryonic development. We reveal a range 95 

of previously unknown O-GlcNAc proteins with established links to homeotic and non-homeotic phenotypes as 96 

candidate conveyors of the Drosophila OGT/sxc catalytic null phenotype. 97 

  98 
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Results 99 

 100 

A tool for the enrichment of O-GlcNAcylated proteins 101 

Our earlier work on the elucidation of the catalytic mechanism of OGA, using the bacterial enzyme CpOGA as a 102 

model, revealed a number of conserved amino acids in the active site involved in catalysis28,29. In particular, 103 

Asp298 (equivalent to Asp175 in hOGA) was identified as the catalytic acid that protonates the glycosidic bond, 104 

and Asp401 (equivalent to Asp285 in hOGA) was identified as being involved in hydrogen bonding required for 105 

the anchoring of the GlcNAc moiety in the active site through its O4 and O6 hydroxyl groups (Fig. 1a). The 106 

D298N mutant of CpOGA was catalytically impaired (8100-fold decrease in kcat compared to wild type enzyme) 107 

with negligible effect on the substrate KM, while the D401A mutant demonstrated loss of binding to the model 108 

substrate 4-methylumbelliferyl-GlcNAc (4MU-GlcNAc) (5-fold increase in KM, 2400-fold decrease in kcat)28. 109 

Having previously shown that CpOGAD298N (but not the binding-deficient CpOGAD401A or the double mutant 110 

CpOGAD298N,D401A) can be used as a probe for the specific detection of O-GlcNAcylated proteins in both human 111 

and Drosophila cell/tissue lysates18, we wanted to evaluate the feasibility of using it as a substrate trap to pull 112 

down O-GlcNAcylated proteins.  113 

 114 

To this end, we first carried out a proof of principle experiment. Halo-tagged CpOGAD298N, or the double mutant 115 

CpOGAD298N,D401A as a negative control, were covalently coupled to HaloLinkTM (Promega) beads and incubated 116 

with unmodified or in vitro O-GlcNAcylated recombinant TAB1 (transforming growth factor beta-activated kinase 117 

1 binding protein 1) (Fig. 1b and Supplementary Results, Supplementary Fig. 1), a protein whose O-118 

GlcNAcylation has previously been demonstrated to modulate innate immune signaling downstream of the IL-1 119 

receptor30. Elution of enriched TAB1 from the mutant CpOGA beads was achieved by boiling the beads with 120 

sample buffer (see online methods). CpOGAD298N, but not the double mutant, was successful in pulling down O-121 

GlcNAcylated but not unmodified TAB1, showing that the pull down occurred in an O-GlcNAc specific and 122 

CpOGA active-site dependent manner (Fig. 1b). The affinity of CpOGAD298N for glycosylated TAB1 was therefore 123 

sufficient for it to pull down the modified substrate, suggesting that it might be suitable for the enrichment of O-124 

GlcNAcylated proteins from more complex samples such as cell/tissue lysates.  125 

 126 
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Prior to applying it to enrich for O-GlcNAcylated proteins from cell/tissue lysates, we wished to further dissect 127 

the substrate specificity of CpOGAD298N. It is evident from our previous work that CpOGAD298N is a specific 128 

detector of O-linked GlcNAc in HEK293 cell lysates as well in lysates of Drosophila S2 cells and embryos; 129 

PNGaseF treatment of lysates does not result in any visible alteration of signal obtained using CpOGAD298N as a 130 

probe for detection by Far Western blotting18. To investigate whether CpOGAD298N would bind to N-GlcNAc 131 

moieties in lysates resulting from endogenous ENGase activity, we performed a fluorescence polarization assay 132 

we previously described18, using an N-GlcNAcylated synthetic peptide derived from Cathepsin D. It appears that 133 

the conformation of the sugar/peptide backbone in a short peptide containing an O-linked GlcNAc moiety vs. an 134 

N-linked GlcNAc moiety affects CpOGAD298N binding, as no detectable binding was observed when up to 2.5 mM 135 

of the N-linked GlcNAc containing peptide derived from Cathepsin D (SYLN(GlcNAc)VTR)31 was used 136 

(Supplementary Fig. 2). In contrast, CpOGAD298N binds to an O-GlcNAc peptide derived from dHCF 137 

(VPST(GlcNAc)MSAN) with an affinity of 36 µM (highest concentration of peptide used - 2.7 mM)18. SPR 138 

experiments to determine differences in the binding to GlcNAc vs. GlcNAc(β1-4)GlcNAc reveal that CpOGAD298N 139 

binds the latter with a 20-fold lower affinity (29 µM vs. 590 µM) (Supplementary Fig. 3), suggesting that the 140 

mutant protein would have poor affinity for terminal GlcNAc moieties on extended glycan structures and would 141 

therefore preferentially bind to O-GlcNAc. 142 

 143 

To determine how the substrate trap compares to previously published enrichment methods applied to lysates 144 

of a single cell line32,33, pull downs were also performed from HeLa cell lysates. Lysates were incubated for 90 145 

min at 4 °C with Halo-tagged CpOGAD298N or the control mutant CpOGAD298N,D401A covalently coupled to saturation 146 

to HaloLink beads (schematic in Fig. 2a). To ensure that the eluents contained O-GlcNAcylated proteins captured 147 

specifically by the CpOGAD298N active site, elution was achieved by displacement with a molar excess of the 148 

OGA inhibitor Thiamet G34 (Fig. 2a), which retains binding to the inactive CpOGAD298N mutant (with a Kd of 688 149 

nM, Supplementary Fig. 4). The pull down performed with CpOGAD298N, but not that performed with the 150 

CpOGAD298N,D401A  negative control, resulted in an overall qualitative enrichment of O-GlcNAcylated proteins as 151 

visualized by Western blotting of samples using the RL2 antibody (representative blot in Fig. 2b and 152 

Supplementary Figs. 5-6), suggesting that this approach is a suitable enrichment method for complex samples. 153 

To identify the O-GlcNAcylated proteins enriched, three independent replicate pull downs were performed, 154 
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including negative controls with CpOGAD298N,D401A. Eluates from these pull downs were processed and subjected 155 

to mass spectrometry. A total of 915 protein accessions were identified from the HeLa eluates, of which 859 156 

were significantly enriched (4-fold, p < 0.05) in the CpOGAD298N mutant pull down compared to the control 157 

CpOGAD298N,D401A pull down (Supplementary Dataset 1). Bona fide O-GlcNAcylated substrates, such as the 158 

histones H2A, H2B, H3 and H435,36, c—Rel37, CREB38, CK2α39,40, TAB130 and OGT21,41 were among the proteins 159 

identified, thus validating the enrichment method. In contrast, a previously published study33 identified 199 160 

significantly enriched proteins from HeLa cells using a tagging via substrate (TAS) approach, whereby a cell 161 

permeable azide modified analog of UDP-GlcNAc is used for the metabolic labeling of OGT substrates, which 162 

are then chemoselectively enriched. 49 of the significantly enriched proteins identified by us were also identified 163 

by that study33 (Supplementary Table 1). We identified 550 high confidence O-GlcNAc peptide sequence 164 

matches in 3 replicate MS analyses (3 with ETD site assignments). These resulted in a total of 61 high confidence 165 

O-GlcNAc peptides being identified that mapped to 29 of the 859 identified proteins (Supplementary Dataset 2 166 

and Supplementary Table 2). This represents 3.3% of significantly enriched proteins on which O-GlcNAc sites 167 

were mapped, and is comparable to the 3.8% of significantly enriched proteins (using a metabolic 168 

labeling/chemoselective capture approach coupled to BEMAD) from denatured HEK293 cell lysates on which a 169 

previous study mapped O-GlcNAc sites32. Interestingly, 373 significantly enriched proteins identified by us from 170 

HeLa cells were also identified in that study in HEK293 cells with a large number of substrates unique to both 171 

studies (Supplementary Table 3).  The prime advantage of enrichment using CpOGAD298N lies in the fact that no 172 

derivatization of O-GlcNAc moieties is required prior to enrichment unlike in metabolic (for cell lines) or 173 

chemoenzymatic (for tissue samples) labeling - it is a one-step method. Also, unlike WGA, CpOGAD298N 174 

possesses better affinity for O-GlcNAc, potentially enabling the enrichment and identification of a larger number 175 

of substrates. 176 

 177 

Enrichment of O-GlcNAc proteins from Drosophila embryos 178 

We next used CpOGAD298N to enrich O-GlcNAcylated proteins from Drosophila embryo lysates in an attempt to 179 

begin to identify the O-GlcNAc proteome responsible for the sxc null phenotypes. A total of 3558 proteins 180 

accessions (isoforms of proteins and redundant entries with unique Uniprot accessions contribute to this number) 181 
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were identified (Supplementary Dataset 3), of which 2358 were significantly enriched (4-fold, p < 0.05) in the 182 

CpOGAD298N mutant pull down compared to the control CpOGAD298N,D401A pull down (Supplementary Dataset 3). 183 

 184 

2044 of the 2358 proteins enriched were recognised by PANTHER42, which was used for Gene Ontology (GO) 185 

analysis of the data and 881 cellular component hits were obtained. The majority (678) of the hits are 186 

nucleocytoplasmic (cell part, organelle and macromolecular complexes in the nucleus and cytoplasm), with 84 187 

proteins being classified as membrane proteins, 116 as secreted or extracellular matrix proteins, 2 as synaptic 188 

proteins and 1 as a cell junction protein (Fig. 2c). Significantly enriched (p < 0.05, Bonferroni correction for 189 

multiple testing applied) GO cellular compartment terms are detailed in Supplementary Table 4.  190 

 191 

Protein class analysis (performed using PANTHER) revealed that nucleic acid binding proteins represent the 192 

largest protein class identified, with 14% (289 out of 2136: 2044 recognised proteins with 2136 protein class hits) 193 

of proteins belonging to this class, most of these involved in RNA transport and processing (Fig. 3a). 194 

Transcription factors represent 4% of classified proteins and include Dp, Taf6, Cand1, fkh and T-related protein 195 

(byn orthologue). In mouse synaptic membranes, kinases have been shown to be more frequently O-196 

GlcNAcylated than other protein classes in general (16% versus 10%, p < 3.6 × 10−4)22.  In contrast, kinases and 197 

phosphatases combined comprise only 5% (~ 2.5% each) of classified proteins in our dataset and do not display 198 

a statistically significant overrepresentation (Fig. 3a, Supplementary Table 5). Protein kinases identified include 199 

the Akt-1, Cdk7, Cdc2 and Abl orthologues, while protein phosphatases identified include the PP2A 55 kDa 200 

subunit and Ptp4E, among others. While histones themselves are absent from the dataset, the HDACs Rpd3 201 

and HDAC3 are present. The putative HAT Enok is also present, as is the bromodomain containing homeotic 202 

protein female sterile (fs(1)h- Brd2 orthologue). Significantly enriched (p < 0.05, Bonferroni correction for multiple 203 

testing applied) protein classes along with fold enrichment values are listed in Supplementary Table 5.  204 

 205 

Pathway analysis (performed using PANTHER) identified 33 of 2044 mapped protein accessions (~ 1.6%) as 206 

functioning in the Wnt signaling pathway (Supplementary Fig. 7). Examples of the Wnt signaling proteins 207 

identified are cadherin-87A, the acetyltransferase Neijre (CREB-binding protein/CBP orthologue), the HDAC 208 

Rpd3, the mor orthologue, CK1, and the helicase domino. Other proteins in the dataset are involved in pathways 209 



 10 

such as the ubiquitin proteasome pathway, DNA replication, apoptosis and cytoskeletal regulation by Rho 210 

GTPase (Supplementary Fig. 7). Interestingly, many proteins involved in these pathways are also implicated in 211 

the pathogenesis of Huntington’s and Parkinson’s disease. Mutations in huntingtin for example, affect its 212 

interaction with hits like CBP43.  213 

 214 

Identification of O-GlcNAc proteins linked to development  215 

We next examined the O-GlcNAc sites on enriched proteins. In the CpOGAD298N pull downs we identified, in three 216 

experiments, a total of 268 high confidence O-GlcNAc peptide sequence matches (32 with ETD site 217 

assignments) (Supplementary Dataset 4 and Supplementary Tables 6-7); ETD fragmentation spectra for two 218 

HexNAc peptides are shown in Fig. 3b-c). These resulted in a total of 52 high confidence O-GlcNAc peptides 219 

being identified (Supplementary Dataset 4) that were mapped on a total of 43 proteins (Supplementary Table 7). 220 

In contrast, only 3 HexNAc peptide sequence matches were identified in the CpOGAD298N,D401A pull downs (none 221 

of which with ETD site assignments) (Supplementary Table 6). 222 

 223 

The majority of the high confidence O-GlcNAc sites are on nuclear/nucleocytoplasmic proteins. Tay (AUTS2 – 224 

like protein), Grunge (Gug – atrophin orthologue), myopic (mop – HDPTP orthologue), and lingerer (lig – UBA 225 

domain containing protein) are examples of bona fide O-GlcNAcylated proteins identified in this study and many 226 

of these are conserved across evolution. Our dataset also includes the nuclear pore proteins (Nups) (recently 227 

reviewed44), Ataxin-2 (Atx2)45, CF11970 (NFRKB orthologue)46 and HCF47, which have previously been shown 228 

to be O-GlcNAcylated in other organisms although the role of the modification on these proteins is as yet not 229 

understood. GO analysis using STRING48 to determine the biological processes associated with these O-230 

GlcNAcylated proteins categorizes 19 of the 42 proteins mapped as being involved in anatomical structure 231 

development and morphogenesis, with four (if, Gug, tay and LanA) amongst those specifically associated with 232 

appendage development/morphogenesis, a process clearly affected in OGT null mutant flies given the 233 

phenotypes observed (e.g. the homeotic transformation of antennae to prothoracic legs and wings to haltere-like 234 

structures3). Interestingly, 11 hits are classified as being involved in nervous system development and include 235 

Atx-2 and Iswi.  236 

 237 
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Improper O-GlcNAc modification of Ph, one of the most prominent substrates of OGT in Drosophila has been 238 

proposed to be responsible for the OGT/sxc phenotypes via misexpression of Hox genes7,9. Nevertheless, 239 

numerous transcription factors and cell signalling molecules have been identified in this study as being O-GlcNAc 240 

modified. These data therefore suggest the possibility that some of the phenotypes associated with the lack of 241 

OGT activity may be downstream of hypo-O-GlcNAcylation of one of the non-Ph OGT substrates. Site mapping 242 

confirmation in this study establishes Gug as a genuine OGT substrate. We also identified O-GlcNAcylated 243 

peptides from Gug in immunoprecipitates obtained from embryo lysates using the anti-O-GlcNAc antibody RL2 244 

but not an isotype control antibody, thereby orthogonally confirming its modification status (Supplementary Fig. 245 

8a shows the EThcD fragmentation spectrum for one of the HexNAc peptides identified). Gug is a nuclear 246 

receptor corepressor, which was identified in a screen designed to identify regulators of one of the other O-247 

GlcNAc proteins in the embryo O-GlcNAc proteome, teashirt49. Since then the functions of Gug in transcriptional 248 

regulation of EGF receptor signalling50, as a co-repressor for Even skipped51, Tailless52 and Cubitus interruptus53 249 

have been established, outlining its multiple roles during embryonic development. One of the other identified O-250 

GlcNAc modified substrates is mop (also orthogonally verified as being modified using an anti-O-GlcNAc 251 

antibody, EThcD fragmentation spectrum in Supplementary Fig. 8b). A protein associated with intracellular 252 

vesicles, mop, was found to be essential for transit of ubiquitylated EGF receptor to lysosomes54. In addition, 253 

mop is also involved in distribution of integrins during oogenesis55, endocytosis and activation of the Toll56, 254 

Wnt/Wingless57, Frizzled58 and Yorkie59 pathways also affecting respective downstream signalling. 255 

To investigate how reduced O-GlcNAc modification of two of these OGT substrates, Gug and mop, affects their 256 

function, genetic interaction experiments were performed. We used an OGT catalytic hypomorphic allele, 257 

OGT/sxcH537A (henceforth represented as sxcH537A), that we have generated using CRISPR gene editing 258 

(Mariappa et al., Under revision, J. Biol. Chem.). This ensured that any potential genetic interaction we observed 259 

was a consequence of reduced OGT catalytic activity and therefore decreased O-GlcNAc modification of Gug 260 

and mop. Recessive lethal alleles Gug03928 (P element insertion)50 and mopT482 (Q1968Stop)54 were crossed into 261 

either homozygous or heterozygous sxcH537A background. CRISPR control (Cr Control) flies were generated from 262 

the BL51323 stock used for CRISPR injections and subjected to the same crossing scheme as the sxcH537A 263 

mutant lines. None of the Cr Control (Fig. 4a, Supplementary Fig. 9), OGT/sxcH537A homozygotes (Fig. 4b, 264 
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Supplementary Fig. 9) or heterozygotes for Gug03928 and mopT482 (Supplementary Fig. 9) displayed wing vein 265 

deposition defects. About 2% and 1% of sxcH537A/+;Gug03928/+ and sxcH537A /+;mopT482/+ double heterozygotes 266 

had a short L5 longitudinal wing vein that did not reach the wing margin (Supplementary Fig. 9, Supplementary 267 

Table 8). This phenotype was enhanced on further reduction in OGT activity in flies homozygous for the sxcH537A 268 

allele and heterozygous for either Gug03928 and mopT482; to 14% in sxcH537A;Gug03928/+ flies and 8% 269 

sxcH537A;mopT482/+ flies (Fig. 4c-d and Supplementary Table 8). More of the sxcH537A/sxcH537A;Gug03928/+ flies (5%) 270 

had the short L5 wing vein defect in both the wings as compared to the sxcH537A/sxcH537A;mopT482/+ flies (0.6%, 271 

Supplementary Table 8). These data establish a genetic interaction between the hypomorphic OGT/sxc allele 272 

and alleles of two of the OGT substrates Gug and mop. Given that both Gug50 and mop54 have roles in EGF 273 

signalling-dependent wing vein specification, O-GlcNAc modification of these two proteins could potentiate their 274 

function in EGF signalling.   275 
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Discussion 276 

 277 

Unlike OGT knockout mice, which do not survive beyond the single cell stage60, OGT null flies develop to the 278 

pharate adult stage and display the hallmark phenotypes of mutants of polycomb group (PcG) proteins3. This, in 279 

addition to the relatively rapid generation time and amenability to genetic manipulation, renders Drosophila 280 

melanogaster an attractive model organism in which to dissect the role of O-GlcNAc on proteins, particularly in 281 

the context of early development. Targeted investigation of all known members of the PcG has led to the 282 

identification of polyhomeotic (ph) as a key OGT substrate from this class of proteins7. The O-GlcNAcylation of 283 

ph has been suggested to be important in preventing its self-aggregation9. The discovery that the phenotypes of 284 

OGT null mutants resemble a less severe version of the phenotypes of the ph null mutant has led to the 285 

suggestion that the loss of O-GlcNAc on ph is the key driver of the manifestation of the defects exhibited by OGT 286 

null flies10. Ph is not, however, the sole OGT substrate in Drosophila, and the role of O-GlcNAc on a handful of 287 

other proteins has been studied in the fly11-14,16,17. Nevertheless, it is not understood how the O-GlcNAc proteome 288 

maps to processes that are critical for development in both Drosophila and vertebrates.  289 

 290 

We previously described CpOGAD298N as a versatile and specific tool for the detection of O-GlcNAc in mammalian 291 

and Drosophila cell lysates, and used it to demonstrate that protein O-GlcNAcylation is dynamic during 292 

Drosophila embryogenesis18. We have now successfully deployed CpOGAD298N for the enrichment of O-293 

GlcNAcylated proteins from Drosophila embryos and have discovered novel substrates of OGT in the fly. 294 

Interestingly, genetic interactions of a hypomorphic OGT/sxc allele with lethal recessive alleles of two of the bona 295 

fide substrates, Gug and mop, lead to a similar phenotype wherein the L5 wing vein is short. Reduced deposition 296 

of wing vein material is observed in mop mutant wings, possibly affecting EGF signalling54. Conversely, EGF 297 

signalling dependent wing vein deposition is enhanced in a Gug mutant background50. It is possible that O-298 

GlcNAc modification of Gug and mop could affect their role in EGF signalling via mechanisms that will need to 299 

be further investigated. Nevertheless, given the role of both these proteins in numerous other cell signalling and 300 

transcriptional control events, O-GlcNAcylation of Gug or mop could be modulating one/multiple such 301 

downstream events. In addition, we have also observed genetic interaction between sxcH537A with a Hcf null allele 302 
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with respect to specification of the thoracic scutellar bristles (Mariappa et al., Under revision, J. Biol. Chem.), 303 

thus underlining the multiple roles that can be ascribed to O-GlcNAcylated substrates.  304 

 305 

The identification and validation of proteins like Gug and mop as bona fide OGT substrates, and the 306 

determination of O-GlcNAc sites on them, paves the way for future studies aimed at investigating the effect of 307 

O-GlcNAc on these proteins and the processes they regulate. While some of these hits could contribute to the 308 

homeotic transformations observed in OGT/sxc null flies, others might reveal novel, potentially conserved 309 

functions of O-GlcNAc through the identification of subtler phenotypes in non-lethal OGT/sxc mutants. 310 

  311 
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Figure legends 463 

 464 

Figure 1: A point mutant of CpOGA can be exploited as a substrate trap for the enrichment of O-465 

GlcNAcylated proteins.  466 

(a) The inactive mutant CpOGAD298N can bind to substrate proteins (substrate is shown as a yellow cartoon, 467 

with GlcNAc depicted with pink sticks) but cannot hydrolyse GlcNAc therefore trapping O-GlcNAc 468 

modified proteins. The double mutant CpOGAD298N,D401A cannot bind O-GlcNAcylated proteins and 469 

therefore cannot act as a substrate trap  470 

(b) Unmodified or O-GlcNAcylated TAB1 was incubated with Halo-CpOGAD298N coupled covalently to 471 

HaloLink beads. Pull down using the binding-deficient mutant CpOGAD298N,D401A was included to test the 472 

specificity of the pull down. Input, flow-through and elution fractions were blotted and probed with the 473 

antibodies mentioned. Elutions were performed by boiling the beads with sample buffer. TAB1 was pulled 474 

down in an O-GlcNAc specific manner by CpOGAD298N but not the control probe as evidenced by the 475 

presence of modified but not unmodified TAB1 in the elution fractions from CpOGAD298N.  476 

 477 

Figure 2: Pull down of O-GlcNAcylated proteins by CpOGAD298N.  478 

(a) Schematic of the CpOGAD298N enrichment method. Halo-tagged CpOGA mutants covalently coupled to 479 

HaloLink beads were used to pull down O-GlcNAcylated proteins. Elution of proteins from the beads was 480 

achieved by using a molar excess of the OGA inhibitor Thiamet G. Eluted proteins were concentrated 481 

using a spin concentrator and processed for mass spectrometry. 482 

(b) Pull down from Drosophila embryo lysates using CpOGAD298N, but not the control mutant, results in the 483 

enrichment of O-GlcNAcylated proteins detected in the elution fractions.  484 

(c) Cellular localization of proteins identified by CpOGAD298N. Cellular component analysis of all proteins 485 

identified by CpOGAD298N. 486 

 487 

Figure 3: Protein class grouping of proteins identified by CpOGAD298N and example ETD fragmentation 488 

spectra for HexNAc modified peptides from Host Cell Factor (HCF) and Nucleoporin 153 (Nup153) 489 
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(a) Protein classes represented by identified proteins. Uniprot accessions of significantly enriched proteins 490 

(in CpOGAD298N pulldown vs. control pulldown) provided in Supplementary Dataset 3 were used as 491 

input for analysis on PANTHER database. 492 

(b) and (c) Example ETD fragmentation spectra for HexNAc modified peptides from Host Cell Factor (HCF) 493 

(b) and Nucleoporin 153 (Nup153) (c). One peptide each from Host Cell Factor and Nucleoporin 153kD 494 

are shown. Peptide fragments were assigned using Mascot and Proteome Discoverer 2.0. Signals of 495 

charged reduced species of the precursor and neutral losses associated with it in the spectrum were 496 

filtered out. For clarity, only c[+1], red, and z[+1], blue, ions are annotated.. The sequence relevant to 497 

each ion is shown, lower case “s”/“t” indicate the HexNAc modified residues. 498 

 499 

Figure 4: OGT catalytic activity potentiates the function of its substrates Grunge and myopic.  500 

Genetic interaction between OGT/sxcH537A and Gug03928 or mopT482 alleles was assessed in the adult wing. In the 501 

Cr control (a), OGT/sxcH537A (b) homozygotes or Gug03928 or mopT482 heterozygotes have a complete L5 502 

longitudinal wing vein that reaches the wing margin. In OGT/sxcH537A/OGT/sxcH537A;Gug03928/+ (c) or 503 

OGT/sxcH537A/OGT/sxcH537A;mopT482/+ (d) flies, 14% and 8% of the flies, respectively, have a shorter L5 wing 504 

vein. Fewer of the double homozygotes, OGT/sxcH537A/+;Gug03928/+ or OGT/sxcH537A/+;mopT482/+ display this 505 

phenotype as demonstrated by the quantification in (e). Arrows in (c) and (d) point to the short L5 wing vein 506 

phenotype. 507 

508 
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Online methods 509 

 510 

Drosophila embryos 511 

Embryos from w1118 wild type flies were used. Fly stocks were maintained by flipping vials once every ten days. 512 

Embryos (0-16 h) were collected on apple juice agar plates at 25 °C overnight. For embryo collections, flies were 513 

assigned from vials in a rack in random order to three separate cages to represent three biological replicates. 514 

Collected embryos were dechorionated with bleach and snap frozen in dry ice and stored at -80 ºC until they 515 

were processed. Samples were collected over time and on independent occasions in this manner till enough 516 

material was obtained for further processing. Lysates were prepared as described below. Bradford assay or 517 

Pierce 660 nm protein assay was used to quantify cell lysates.  518 

 519 

Cell culture 520 

HeLa cells were cultured in Dulbecco's modified Eagle's medium (DMEM; Gibco) supplemented with 10% fetal 521 

bovine serum (FBS), L-glutamine, and penicillin streptomycin at 37 °C with humidified air at 5% CO2. Cells were 522 

plated on 10 cm dishes and grown to 80% confluence prior to harvesting. 523 

 524 

Protein expression and purification 525 

Plasmids containing N-terminally Halo-tagged CpOGA (31-618) were transformed into E. coli BL21-Gold (DE3) 526 

pLysS cells (Agilent). Cells were grown overnight at 37 °C in Luria-Bertani medium containing 50 μg/ml 527 

Kanamycin (LB-Kan) and used at 10 mL/L to inoculate of fresh LB-Kan. Cells were grown to an OD600 of 0.6-0.8, 528 

transferred to 18 °C and induced with 250 µM IPTG and harvested after 16 h by centrifugation for 30 min at 3500 529 

rpm (4 °C). Cell pellets were resuspended in 10-20 mL of 50 mM Tris, 250 mM NaCl at pH 7.5 (lysis buffer) 530 

supplemented with protease inhibitors (1 mM benzamidine, 0.2 mM PMSF and 5 µM leupeptin), DNAse and 531 

lysozyme prior to lysis. Cells were lysed using a continuous flow cell disrupter (Avestin, 3 passes at 20 kpsi) and 532 

the lysate was cleared by centrifugation (30 min, 15,000 rpm, 4 °C). Supernatants were collected and loaded 533 

onto a HisTrap HP column (GE Healthcare Life Sciences) charged with NiSO4 and pre-equilibrated with lysis 534 

buffer. The column was washed with 10 column volumes of lysis buffer. Proteins were eluted with a linear 535 

gradient of imidazole (0-500 mM) over 20 column volumes. Late elution fractions were pooled and dialysed into 536 
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1 x TBS and snap frozen with a final concentration of 20% glycerol and stored at -80 °C until use. Untagged 537 

proteins used for fluorescence polarization and surface plasmon resonance experiments were prepared as 538 

described previously18.  539 

 540 

Fluorescence Polarimetry 541 

Experiments were performed as described before18. Briefly, to avoid receptor depletion, reaction mixtures for 542 

competition binding experiments contained 5 nM fluorescent probe, 7 nM of CpOGAWT (receptor)/20 nM 543 

CpOGAD298N (receptor) and a range of concentrations of ligands. Reactions were allowed to stand at room 544 

temperature for 10 min. Highest amount of fluorescent probe bound to CpOGAD298N in the absence of competing 545 

ligands was arbitrarily set as 100%. EC50 values were determined by fitting non-linear regression curves with 546 

Prism (GraphPad) and converted to Kd as described before18. All experiments were performed in triplicate. 547 

 548 

Surface Plasmon Resonance 549 

Experiments were performed as described before18. Briefly, biotinylated proteins were captured on a neutravidin 550 

surface prepared on high capacity amine sensor chip of a Mass-1 instrument (Sierra Sensors) at densities 551 

3,600–3,900 RU. Ligands were injected over captured proteins at a flow rate of 30 µL min–1 in running buffer (25 552 

mM Tris pH 7.5, 150 mM NaCl, 0.05% Tween20), with each compound injected in duplicates in concentration 553 

series adjusted specifically around their affinities. Association was measured for 60 s and dissociation for 120 s. 554 

All data were double referenced for blank injections of buffer and biotin-blocked Streptavidin surface. Data 555 

processing and analysis were performed using Analyser 2 (Sierra Sensors) and Scrubber 2 (BioLogic Software). 556 

 557 

CpOGAD298N pull downs  558 

Halo-tagged CpOGA proteins were purified as described above and coupled to MagneTMHaloTag® Beads 559 

(Promega) as per the manufacturer’s instructions. Briefly, MagneTMHaloTag® Beads (Promega) were 560 

equilibrated with 50 mM Tris pH 7.5, 150 mM NaCl (wash buffer) supplemented with 0.05% Tween-20 (binding 561 

buffer). The binding capacity of the beads for tagged CpOGA was determined to be 8 mg per mL of settled 562 

beads. Beads were coupled to saturation with CpOGA for 90 min h at 4 °C then washed extensively with wash 563 

buffer and stored on ice. Halo-CpOGA beads were prepared freshly for each experiment.  564 



 25 

 565 

For the TAB1 pull down experiment, in vitro O-GlcNAcylation of TAB1 was performed by incubating 24 µg (18.2 566 

µM) of TAB1 with 10 µg (4.1 µM) hOGT and 10 mM UDP-GlcNAc in a final volume of 30 µL for 3 h at 37 °C. The 567 

reaction was stopped by the addition of a final concentration of 20 mM of UDP. ‘Unmodified TAB1’ was the 568 

product of reactions containing all components except for UDP-GlcNAc. The reactions were split in four equal 569 

volumes (containing 3 µg of total TAB1 each), of which two were retained for loading as input and one each of 570 

the remainder of the two loaded onto 50 µL of a 20% slurry of HaloLink beads coupled to saturation with 571 

CpOGAD298N or CpOGAD298N,D401A . The incubation with beads was performed in a total volume of 200 µL made 572 

up with binding buffer for 1 h at 4 °C. The flow-through was collected, beads washed 3 times with wash buffer 573 

and bound protein eluted using 200 µL of 10 mM Tris pH 6.8, 4% SDS, 200 mM DTT by boiling for 2 min. The 574 

‘input’ fractions were also made up to a volume of 200 µL and 8 µL of all fractions were subjected to SDS PAGE 575 

and Western blotting. The antibodies used were Anti-TAB1 (C25E9 – Cell Signaling, 1:5000) and anti-O-GlcNAc 576 

RL2 (ab2739 – Abcam, 1:3000 or 1:1000) 577 

 578 

Drosophila embryo lysates and HeLa lysates were prepared with RIPA buffer (50 mM Tris pH 7.5, 1% NP-40, 579 

0.5% sodium deoxycholate, 0.1% SDS, 150 mM NaCl, 2 mM EDTA and 50 mM NaF). For each replicate 580 

experiment, protein lysates were split in half to carry out pull downs with either CpOGAD298N or the control 581 

CpOGAD298N,D401A. 7 mg of lysates were incubated with 200 µL of settled HaloLink beads coupled to saturation 582 

with CpOGAD298N or CpOGAD298N, D401A for 90 min at 4 °C. The flow through was collected and the beads washed 583 

extensively with wash buffer. Bound proteins were eluted by incubating the beads 2 x for 30 min at 4 °C with 250 584 

µL wash buffer supplemented with 3 mM Thiamet G. The eluents were concentrated using a 10 kDa molecular 585 

weight cut off spin concentrator and ~2 µg set aside for Western blotting and the rest prepared for mass 586 

spectrometry analysis as below. Experiments were performed in triplicate.  587 

 588 

RL2 immunoprecipitation 589 

5 mg of embryo lysates prepared as described above were incubated for 3 h at 4 °C with 5 μg of RL2 or Mouse 590 

normal IgG1 (Cell Signaling) antibody bound to Protein G dynabeads (Invitrogen) as per the manufacturer’s 591 

instructions. The flow through was collected and incubated with freshly coupled RL2/IgG1 (5 μg) dynabeads 592 
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overnight at 4 °C. The immunoprecipitates were washed several times with 500 μL of 1 X TBS containing 0.02% 593 

Tween 20 per wash and eluted by boiling the beads for 5 min in 50 mM Tris pH 6.8 containing 4% SDS and 200 594 

mM DTT. Eluates were processed for mass spectrometry as described below.  595 

 596 

Sample preparation for mass spectrometry 597 

Samples were run halfway down precast NuPAGE 4-12% Bis-Tris gels (Invitrogen) and stained in clean plastic 598 

containers with InstantBlue (Expedeon) Coomassie stain then de-stained using mass spec grade water (VWR). 599 

Each lane on the gel was excised into up to 0.5 cm X 0.5 cm sections and then further diced into 1 mm cubes 600 

using a clean scalpel. The excised gel pieces were de-stained till colourless using 50% methanol, rinsed with 601 

50% acetonitrile and subsequently with 50% acetonitrile in 50 mM ammonium bicarbonate buffer (wash buffer). 602 

In-gel reduction was performed by incubating gel pieces in 10 mM DTT made in 50 mM ammonium bicarbonate 603 

for 20 min at RT, then alkylated by adding 50 mM iodoacetamide made in 50 mM ammonium bicarbonate buffer 604 

for 30 min at RT in the dark. The gel pieces were then washed several times with wash buffer and dehydrated 605 

by incubating for 10 min at RT in 100% acetonitrile. Gel pieces were then swelled with enough 25 mM 606 

triethylammonium bicarbonate buffer to cover them and subjected to enzymatic digestion using Trypsin (mass 607 

spec grade, Promega) at 5 µg per mL of triethylammonium bicarbonate buffer at 30 °C for 16 h. The solution 608 

containing liberated peptides was then collected and more peptides extracted from the gel pieces using 50% 609 

acetonitrile containing 2.5% formic acid. Peptides were pooled and dried in a SpeedVac and stored at -80 °C 610 

until MS analysis.  611 

 612 

Mass spectrometry and data analysis 613 

HCD and ETD mass spectrometry analysis (or EThcD for RL2 immunoprecipitates) was performed by LC-MS-614 

MS on a Fusion ion trap-orbitrap hybrid mass spectrometer (Thermo Scientific) coupled to a U3000 RSLC HPLC 615 

(Thermo Scientific). 50%/10% of the Drosophila embryo samples/HeLa samples were injected. Peptides were 616 

trapped on a nanoViper Trap column, 2 cm x 100 µm C18 5 µm 100 Å (Thermo-Fisher, 164564) then separated 617 

on a 50 cm EasySpray column (Thermo, ES803) equilibrated with a flow of 300 nl/min of 3% Solvent B [Solvent 618 

A was 2% acetonitrile, 0.1% formic acid, 3% DMSO in H2O; Solvent B was 80% acetonitrile, 0.08% formic acid, 619 

3% DMSO in H2O]. The elution gradient was as follows, Time (min): Solvent B (%); 0:3, 5:3, 55:25, 74:40, 74.5: 620 
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99, 79.5:99, 80:3, 90:3. Data were acquired in the data-dependent mode, automatically switching between MS 621 

and MS-MS acquisition. MS full scan spectra were acquired in the orbitrap with S-lens RF level of 60 %, 622 

resolution of 120000 (scan range m/z 400-1600), with a maximum ion injection time of 50 ms, and AGC setting 623 

of 400000 ions. HCD normalized collision energy was set to 30% and fragment ions were detected in the linear 624 

ion trap using 1 microscan, with a maximum injection time of 250 ms and AGC setting of 100 ions. ETD MS2 625 

analyses were triggered by the presence of product ions with m/z 204.0867 (HexNAc oxonium) and/or 138.0545 626 

(HexNAc fragment) and detected in the Ion Trap, AGC Target 10000 and maximum injection time of 105 ms. 627 

EThcD reactions were triggered as for ETD  or by the presence of the 366.1396  HexNAcHex ion, and detected 628 

in the orbitrap (resolution of 30000, scan range m/z 120-2000) using 1 microscan, AGC setting of 300000 ions 629 

and maximum injection time of 150 ms. Data files were analysed for HexNAc peptides by Proteome Discoverer 630 

2.0 (Thermo), using Mascot 2.4.1 (Matrix Science), and searched against the Uniprot_DROME database or the 631 

Uniprot_HUMAN database as appropriate. Allowance was made for fixed, (carbamidomethyl (C)), and variable 632 

modifications (oxidation (M), dioxidation (M), phospho (S/T) and HexNAc (S/T)). Protein abundance analysis 633 

was performed using MaxQuant 1.5.1.7 and data was further analysed using the Perseus software package; 634 

significant proteins were identified using a two-tailed t-test (p < 0.05). 635 

 636 

Drosophila genetics 637 

The following fly stocks were obtained from Bloomington Drosophila Stock Centre: Gug03928/TM3, Sb1, Ser1 and 638 

mopT482/TM6B, Tb1. The catalytically hypomorphic OGT/sxcH537A flies were generated using CRISPR/Cas9 639 

gene editing (Mariappa et al., Under revision, J. Biol. Chem.). The BL51323 Vasa::Cas9 stock used for the 640 

CRISPR injections were crossed with the balancer stocks to eliminate the Vasa::Cas9 containing X chromosome 641 

similar to the mutant flies to derive the CRISPR control (Cr control) stock. To derive double heterozygotes Cr 642 

control virgins were crossed with OGT/sxcH537A/OGT/sxcH537A;Gug03928/TM6 or 643 

OGT/sxcH537A/OGT/sxcH537A;mopT482/TM6 flies. To derive Gug03928 or mopT482 Cr control virgins were crossed with 644 

Gug03928/TM3, Sb1, Ser1 or mopT482/TM6B, Tb1 flies, respectively. Wing phenotypes of flies of the various 645 

genotypes were assessed using a Motic SMZ microscope. Wing preparations were made by dissecting whole 646 

wings from the flies and transferring them into isopropanol for 24 h. The wings were then mounted in DPX 647 

Mounting medium (Sigma) and imaged with a Leica E24 HD dissection microscope.  648 
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