805 research outputs found

    Atmospheric turbulence in phase-referenced and wide-field interferometric images: Application to the SKA

    Full text link
    Phase referencing is a standard calibration procedure in radio interferometry. It allows to detect weak sources by using quasi-simultaneous observations of closeby sources acting as calibrators. Therefore, it is assumed that, for each antenna, the optical paths of the signals from both sources are similar. However, atmospheric turbulence may introduce strong differences in the optical paths of the signals and affect, or even waste, phase referencing for cases of relatively large calibrator-to-target separations and/or bad weather. The situation is similar in wide-field observations, since the random deformations of the images, mostly caused by atmospheric turbulence, have essentially the same origin as the random astrometric variations of phase-referenced sources with respect to the phase center of their calibrators. In this paper, we present the results of a Monte Carlo study of the astrometric precision and sensitivity of an interferometric array (a realization of the Square Kilometre Array, SKA) in phase-referenced and wide-field observations. These simulations can be extrapolated to other arrays by applying the corresponding corrections. We consider several effects from the turbulent atmosphere (i.e., ionosphere and wet component of the troposphere) and also from the antenna receivers. We study the changes in dynamic range and astrometric precision as a function of observing frequency, source separation, and strength of the turbulence. We find that, for frequencies between 1 and 10 GHz, it is possible to obtain images with high fidelity, although the atmosphere strongly limits the sensitivity of the instrument compared to the case with no atmosphere. Outside this frequency window, the dynamic range of the images and the accuracy of the source positions decrease. [...] (Incomplete abstract. Please read manuscript.)Comment: 9 pages, 11 figures. Accepted for publication in A&A

    Transmission measurement at 10.6 microns of Te2As3Se5 rib-waveguides on As2S3 substrate

    Full text link
    The feasibility of chalcogenide rib waveguides working at lambda = 10.6 microns has been demonstrated. The waveguides comprised a several microns thick Te2As3Se5 film deposited by thermal evaporation on a polished As2S3 glass substrate and further etched by physical etching in Ar or CF4/O2 atmosphere. Output images at 10.6 microns and some propagation losses roughly estimated at 10dB/cm proved that the obtained structures behaved as channel waveguides with a good lateral confinement of the light. The work opens the doors to the realisation of components able to work in the mid and thermal infrared up to 20 microns and even more.Comment: The following article appeared in Vigreux-Bercovici et al., Appl. Phys. Lett. 90, 011110 (2007) and may be found at http://link.aip.org/link/?apl/90/01111

    Monitoring the Bi-Directional Relativistic Jets of the Radio Galaxy 1946+708

    Full text link
    We report on a multi-frequency, multi-epoch campaign of Very Long Baseline Interferometry observations of the radio galaxy 1946+708 using the VLBA and a Global VLBI array. From these high-resolution observations we deduce the kinematic age of the radio source to be \sim4000 years, comparable with the ages of other Compact Symmetric Objects (CSOs). Ejections of pairs of jet components appears to take place on time scales of 10 years and these components in the jet travel outward at intrinsic velocities between 0.6 and 0.9 c. From the constraint that jet components cannot have intrinsic velocities faster than light, we derive H_0 > 57 km s^-1 Mpc^-1 from the fastest pair of components launched from the core. We provide strong evidence for the ejection of a new pair of components in ~1997. From the trajectories of the jet components we deduce that the jet is most likely to be helically confined, rather than purely ballistic in nature.Comment: 20 pages, 8 figures, accepted to Ap

    Rings and rigidity transitions in network glasses

    Full text link
    Three elastic phases of covalent networks, (I) floppy, (II) isostatically rigid and (III) stressed-rigid have now been identified in glasses at specific degrees of cross-linking (or chemical composition) both in theory and experiments. Here we use size-increasing cluster combinatorics and constraint counting algorithms to study analytically possible consequences of self-organization. In the presence of small rings that can be locally I, II or III, we obtain two transitions instead of the previously reported single percolative transition at the mean coordination number rˉ=2.4\bar r=2.4, one from a floppy to an isostatic rigid phase, and a second one from an isostatic to a stressed rigid phase. The width of the intermediate phase  rˉ~ \bar r and the order of the phase transitions depend on the nature of medium range order (relative ring fractions). We compare the results to the Group IV chalcogenides, such as Ge-Se and Si-Se, for which evidence of an intermediate phase has been obtained, and for which estimates of ring fractions can be made from structures of high T crystalline phases.Comment: 29 pages, revtex, 7 eps figure

    Modeling Trap-Awareness and Related Phenomena in Capture-Recapture Studies

    Get PDF
    Trap-awareness and related phenomena whereby successive capture events are not independent is a feature of the majority of capture-recapture studies. This phenomenon was up to now difficult to incorporate in open population models and most authors have chosen to neglect it although this may have damaging consequences. Focusing on the situation where animals exhibit a trap response at the occasion immediately following one where they have been trapped but revert to their original naïve state if they are missed once, we show that trap-dependence is more naturally viewed as a state transition and is amenable to the current models of capture-recapture. This approach has the potential to accommodate lasting or progressively waning trap effects
    corecore