10 research outputs found

    Separation Of Potassium Clavulanate And Potassium Chloride By Nanofiltration: Transport And Evaluation Of Membranes

    No full text
    In this work, four commercial nanoporous membranes (NF and NF90 from Filmtec TM, and NP010 and NP030 from Microdyn Nadir) have been characterized and evaluated in order to use them to separate potassium clavulanate and potassium chloride. Their charge density has been investigated by Tangential Streaming Potential measurements for several concentrations of KCl and pH. The isoelectric point of the membranes has been found to be between pH 5.0 and 6.0. Their rejection for KCl has also been measured and the corresponding concentration polarization effect has been taken into account. Nanofiltration modeling, that considers the steric, electric and dielectric exclusion and the charge variation along the pores (SEDE-VCh model), satisfactorily describes the retention of KCl by using the dielectric constant inside the pores, p, as the only fitting parameter. Although all the studied membranes are highly retentive for the potassium clavulanate, KCA, the most suitable membranes for KCA purification, attending to the KCl/KCA selectivity are NF or NF90 membranes at all pH. Lower pH values give higher selectivity for all the membranes. © 2011 Elsevier B.V. All rights reserved.8312330Bersanetti, P.A., Almeida, R.M.R.G., Barboza, M., Araujo, M.L.G.C., Hokka, C.O., Kinetic studies on clavulanic acid degradation (2005) Biochemical Engineering Journal, 23 (1), pp. 31-36. , DOI 10.1016/j.bej.2004.10.007, PII S1369703X04002748Morao, A.I.C., Alves, A.M.B., Costa, M.C., Cardoso, J.P., Nanofiltration of a clarified fermentation broth (2006) Chemical Engineering Science, 61 (8), pp. 2418-2427. , DOI 10.1016/j.ces.2005.11.007, PII S0009250905008419Almeida, R.M.R.G., Barboza, M., Hokka, C.O., Continuous clavulanic acid adsorption process (2003) Appl. Biochem. Biotechnol., 108, pp. 867-879Butterworth, D., (1984) Biotechnology of Industrial Antibiotics, , Marcel Dekker Inc. New YorkKim, H.H., Kang, S.H., Chang, Y.K., Recovery of potassium clavulanate from fermentation broth by ion-exchange chromatography and desalting electrodialysis (2008) Biotechnol. Bioprocess Eng., 14, pp. 803-810Brites Alves, A.M., Morão, A., Cardoso, J.P., Isolation of antibiotics from industrial fermentation broths using membrane technology (2002) Desalination, 148, pp. 181-186Mayer, A.F., Birger Anspach, F., Deckwer, W.-D., Purification of clavulanic acid by ion-pairing systems (1996) Bioseparation, 6 (1), pp. 25-39Barboza, M., Almeida, R.M.R.G., Hokka, C.O., Kinetic studies of clavulanic acid recovery by ion exchange chromatography (2002) Bioseparation, 10, pp. 221-227Kim, H.H., Kim, J.H., Chang, Y.K., Removal of potassium chloride by nanofiltration from ion-exchanged solution containing potassium clavulanate (2010) Bioprocess Biosyst. Eng., 33, pp. 149-158Hilal, N., Al-Zoubi, H., Darwish, N.A., Mohammad, A.W., Abu Arabi, M., A comprehensive review of nanofiltration membranes: Treatment, pretreatment, modelling, and atomic force microscopy (2004) Desalination, 170 (3), pp. 281-308. , DOI 10.1016/j.desal.2004.01.007, PII S0011916404800328Yacubowicz, H., Yacubowicz, J., Nanofiltration properties and uses (2005) Filtr. Sep., (SEPTEMBER)Braeken, L., Bettens, B., Boussu, K., Van Der Meeren, P., Cocquyt, J., Vermant, J., Van Der Bruggen, B., Transport mechanisms of dissolved organic compounds in aqueous solution during nanofiltration (2006) Journal of Membrane Science, 279 (1-2), pp. 311-319. , DOI 10.1016/j.memsci.2005.12.024, PII S0376738805009063Calvo, J.I., Hernandez, A., Pradanos, P., Tejerina, F., Charge adsorption and zeta potential in cyclopore membranes (1996) Journal of Colloid and Interface Science, 181 (2), pp. 399-412. , DOI 10.1006/jcis.1996.0397Martin, A., Martinez, F., Malfeito, J., Palacio, L., Pradanos, P., Hernandez, A., Zeta potential of membranes as a function of pH: Optimization of isoelectric point evaluation (2003) Journal of Membrane Science, 213 (1-2), pp. 225-230. , DOI 10.1016/S0376-7388(02)00530-6, PII S0376738802005306Morao, A.I.C., Alves, A.M.B., Afonso, M.D., Concentration of clavulanic acid broths: Influence of the membrane surface charge density on NF operation (2006) Journal of Membrane Science, 281 (1-2), pp. 417-428. , DOI 10.1016/j.memsci.2006.04.010, PII S0376738806002468Oak, M.S., Kobayashi, T., Wang, Y.H., Fukaya, T., Fujji, N., PH effect on molecular size exclusion of polyacrylonitrile ultrafiltration membranes having carboxylic acid groups (1997) J. Membr. Sci., 123, pp. 185-195Childress, A.E., Elimelech, M., Relating nanofiltration membrane performance to membrane charge (electrokinetic) characteristics (2000) Environ. Sci. Technol., 34, pp. 3710-3716Schaep, J., Vandecasteele, C., Evaluating the charge of nanofiltration membranes (2001) Journal of Membrane Science, 188 (1), pp. 129-136. , DOI 10.1016/S0376-7388(01)00368-4, PII S0376738801003684Ribau Teixeira, M., Rosa, M.J., PH adjustment for seasonal control of UF fouling by natural waters (2002) Desalination, 151, pp. 165-175Teixeira, M.R., Rosa, M.J., Nystrom, M., The role of membrane charge on nanofiltration performance (2005) Journal of Membrane Science, 265 (1-2), pp. 160-166. , DOI 10.1016/j.memsci.2005.04.046, PII S0376738805003868Bowen W.Richard, Welfoot, J.S., Predictive modelling of nanofiltration: Membrane specification and process optimisation (2002) Desalination, 147 (1-3), pp. 197-203. , DOI 10.1016/S0011-9164(02)00534-9, PII S0011916402005349Silva, V., Martín, A., Martínez, F., Malfeito, J., Prádanos, P., Palacio, L., Hernández, A., Electrical characterization of NF membranes. A modified model with charge variation along the pores (2011) Chem. Eng. Sci., 66 (13), pp. 2898-2911Yaroshchuk, A.E., Dielectric exclusion of ions from membranes (2000) Advances in Colloid and Interface Science, 85 (2), pp. 193-230. , DOI 10.1016/S0001-8686(99)00021-4Nghiem, L.D., Schafer, A.I., Elimelech, M., Nanofiltration of hormone mimicking trace organic contaminants (2005) Separation Science and Technology, 40 (13), pp. 2633-2649. , DOI 10.1080/01496390500283340, PII V11621554553159Nghiem, L.D., Vogel, D., Khan, S., Characterising humic acid fouling of nanofiltration membranes using bisphenol A as a molecular indicator (2008) Water Res, 42, pp. 4049-4058López-Muñoz, M.J., Sotto, A., Arsuaga, J.M., Van Der Bruggen, B., Influence of membrane, solute and solution properties on the retention of phenolic compounds in aqueous solution by nanofiltration membranes (2009) Sep. Purif. Technol., 66, pp. 194-201Carvalho, A.L., Maugeri, F., Silva, V., Hernández, A., Palacio, L., Pradános, P., AFM analysis of the surface of nanoporous membranes: Application to the nanofiltration of potassium clavulanate (2010) J. Mater. Sci., 46, pp. 3356-3369Cavaco Morão, A.I., Szymczyk, A., Fievet, P., Brites Alves, A.M., Modelling the separation by nanofiltration of a multi-ionic solution relevant to an industrial process (2008) J. Membr. Sci., 322, pp. 320-330Bird, A.E., Bellis, J.M., Gasson, B.C., Spectrophotometric assay of clavulanic acid by reaction with imidazole (1982) Analyst, 107 (1279), pp. 1241-1245. , DOI 10.1039/an9820701241Martinez, F., Martin, A., Malfeito, J., Palacio, L., Pradanos, P., Tejerina, F., Hernandez, A., Streaming potential through and on ultrafiltration membranes: Influence of salt retention (2002) Journal of Membrane Science, 206 (1-2), pp. 431-441. , DOI 10.1016/S0376-7388(01)00788-8, PII S0376738801007888Hernandez, A., Martinez, F., Martin, A., Pradanos, P., Porous structure and surface charge density on the walls of microporous alumina membranes (1995) J. Colloid Interface Sci., 173, pp. 284-296Calvo, J.I., Hernandez, A., Pradanos, P., Tejerina, F., Charge adsorption and zeta potential in cyclopore membranes (1996) Journal of Colloid and Interface Science, 181 (2), pp. 399-412. , DOI 10.1006/jcis.1996.0397Kimura, S., Nakao, S., Fouling of cellulose acetate tubular reverse osmosis modules treating the industrial water in Tokyo (1975) Desalination, 17, pp. 267-288Jonsson, G., Boesen, C.E., Concentration polarization in a reverse osmosis test cell (1977) Desalination, 21, pp. 1-10Colton, C.K., Friedman, S., Wilson, D.E., Lees, R.S., Ultrafiltration of lipoproteins through a synthetic membrane (1972) J. Clin. Invest., 51, pp. 2472-2481Sridhar, S., Bhattacharya, P.K., Limiting flux phenomena in ultrafiltration of kraft black liquor (1991) J. Membr. Sci., 57, pp. 187-206Poddar, T.K., Singh, R.P., Bhattacharya, P.K., Ultrafiltration flux and rejection characteristics of black liquor and polyethylene glycol (1989) Chem. Eng. Commun., 75, pp. 39-56Otero, J.A., Mazarrasa, O., Villasante, J., Silva, V., Pradanos, P., Calvo, J.I., Hernandez, A., Three independent ways to obtain information on pore size distributions of nanofiltration membranes (2008) Journal of Membrane Science, 309 (1-2), pp. 17-27. , DOI 10.1016/j.memsci.2007.09.065, PII S0376738807007259Rashin, A.A., Honig, B., Reevaluation of the born model of ion hydration (1985) J. Phys. Chem., 89, pp. 5588-5593Bellona, C., Drewes, J.E., The role of membrane surface charge and solute physico-chemical properties in the rejection of organic acids by NF membranes (2005) J. Membr. Sci., 249, pp. 227-234Geraldes, V., Afonso, M.D., Prediction of the concentration polarization in the nanofiltration/ reverse osmosis of dilute multi-ionic solutions (2007) Journal of Membrane Science, 300 (1-2), pp. 20-27. , DOI 10.1016/j.memsci.2007.04.025, PII S0376738807002815Afonso, M.D., Surface charge on loose nanofiltration membranes (2006) Desalination, 191, pp. 262-272Bowen, W.R., Welfoot, J.S., Modelling of membrane nanofiltration-pore size distribution effects (2002) Chemical Engineering Science, 57 (8), pp. 1393-1407. , DOI 10.1016/S0009-2509(01)00412-2, PII S0009250901004122Montalvillo, M., Silva, V., Palacio, L., Hernández, A., Prádanos, P., Dielectric properties of electrolyte solutions in polymeric nanofiltration membranes (2011) Desal. Water Treat., 27, pp. 25-3

    AFM analysis of the surface of nanoporous membranes: application to the nanofiltration of potassium clavulanate

    No full text
    Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)This study presents the structural characterization of the surface of four commercial nanofiltration membranes: NF90 (polyamide) and NF (polypiperazine amide) from Filmtec(TM) and NP010 and NP030 (polysulfone) from Microdyn Nadir(A (R)), by Atomic Force Microscopy (AFM). These membranes have been studied before and after undergoing a filtration process with potassium clavulanate. The fast Fourier filtering of AFM images with very high magnification (40 x 40 nm) has allowed identifying the pore size distribution and geometry of the pores on the surface of the membrane before their use. Images between 0.5 x 0.5 and 10 x 10 mu m(2) have allowed the study of the surface roughness of the samples before and after being used to filtrate potassium clavulanate solutions. The results of roughness and power spectral fractal dimension along with the skewness and kurtosis of the height distribution have been analyzed in terms of pore size, hydraulic permeability, and the adsorption of clavulanate for the different samples.461033563369Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Ministerio de Ciencia e Innovacion (MCINN) [CTQ2009-07666]Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Ministerio de Ciencia e Innovacion (MCINN) [CTQ2009-07666

    Mass transfer and transport during purification of fructooligosaccharides by nanofiltration

    No full text
    Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)In this work, a process has been designed for the purification of fructooligosaccharides obtained by enzymatic transformation of sucrose from sugar cane molasses. The designed protocol includes two nanofiltration stages with the same membrane. The first one is a diafiltration process, at constant volume followed by concentration. The second stage consists in the nanofiltration of the permeate of the first stage to obtain a concentrate similar in its characteristics to the initial solution. The process allows getting purities over 90% in fructooligosaccharides with yields around 80%. These processes are studied and modeled, by taking into account the effects of the resulting osmotic pressure and the changes in resistance due to solute adsorption on the membrane. The transport is modeled by assuming that there are diffusion and convection but hindered by friction in the pore. The steric partitioning, along with an adequate mass balance for the differently sized molecules have also been considered leading to get the pore size distribution of the membrane. (C) 2010 Elsevier B.V. All rights reserved.36541671356365Ministerio de Ciencia e Innovacion (MCINN) [CTQ2009-07666]Junta de Castilla y Leon [BU-03-C3-2, Grupos de Excelencia-GR18]Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Ministerio de Ciencia e Innovacion (MCINN) [CTQ2009-07666]Junta de Castilla y Leon [BU-03-C3-2, Grupos de Excelencia-GR18

    Liquid-liquid displacement porometry to estimate the molecular weight cut-off of ultrafiltration membranes

    No full text
    corecore