155 research outputs found
Exploring the Free Energy Landscape: From Dynamics to Networks and Back
The knowledge of the Free Energy Landscape topology is the essential key to
understand many biochemical processes. The determination of the conformers of a
protein and their basins of attraction takes a central role for studying
molecular isomerization reactions. In this work, we present a novel framework
to unveil the features of a Free Energy Landscape answering questions such as
how many meta-stable conformers are, how the hierarchical relationship among
them is, or what the structure and kinetics of the transition paths are.
Exploring the landscape by molecular dynamics simulations, the microscopic data
of the trajectory are encoded into a Conformational Markov Network. The
structure of this graph reveals the regions of the conformational space
corresponding to the basins of attraction. In addition, handling the
Conformational Markov Network, relevant kinetic magnitudes as dwell times or
rate constants, and the hierarchical relationship among basins, complete the
global picture of the landscape. We show the power of the analysis studying a
toy model of a funnel-like potential and computing efficiently the conformers
of a short peptide, the dialanine, paving the way to a systematic study of the
Free Energy Landscape in large peptides.Comment: PLoS Computational Biology (in press
The usefulness of contrast during exercise echocardiography for the assessment of systolic pulmonary pressure
<p>Abstract</p> <p>Background</p> <p>The systolic pulmonary artery pressure (PAPs) can be accurately estimated, non-invasively, using continuous-wave Doppler (CWD) ultrasound measurement of the peak velocity of a tricuspid regurgitant (TR) jet.</p> <p>However, it is often difficult to obtain adequate tricuspid regurgitation signals for measurement of PAPs, what could lead to its underestimation. Therefore, utilization of air-blood-saline contrast has been implemented for the improvement of Doppler signal in several clinical contexts.</p> <p>It is now recommended in the evaluation of patients with pulmonary hypertension. Physical activity is severely restricted in patients with PAH, being exertional dypnea the most typical symptom. Exercise stress echo-Doppler imaging allows assessment of the response to exercise. It is an excellent screening test for patients with suspected PAH. Our purpose was to evaluate the value and accuracy of agitated saline with blood contrast echocardiography, in the improvement of the Doppler signal, to quantify PAPs during treadmill exercise-echocardiography.</p> <p>Purpose</p> <p>To evaluate the value of contrast echocardiography, using agitated saline with blood, in the improvement of the Doppler signal used to quantify the pulmonary artery systolic pressure during exercise.</p> <p>Methods</p> <p>From a total of 41 patients (pts), we studied 38 pts (93%), 35 women, aged 54 ± 12 years-old. 27 with the diagnosis of systemic sclerosis, 10 with history of pulmonary embolism and one patient with a suspected idiopathic PAH, who were referred to the Unity of Heart Failure and Pulmonary Hypertension for screening of PAH. According to the Unity protocol, a transthoracic echocardiogram was made, in left decubitus (LD), with evaluation of right ventricle-right atria gradient (RV/RAg). A peripheral venous access was obtained, with a 3-way stopcock and the patients were placed in orthostatism (O), with a new evaluation of RV/RAg. Exercise echocardiography (EE) was begun, with evaluation of RV/RAg at peak exercise (P) and afterwards agitated saline (8 cc with 1 cc of air and 1 cc of blood) was injected, followed by a new evaluation of RV/RAg (PC) and then the interruption of the EE. Pulmonary Hypertension was diagnosed when RV/RAg at the end of the exercise was superior to 40 mmHg.</p> <p>Results</p> <p>The quality of Doppler signal was deteriorated in 5 pts, maintained in 6 pts and improved in 26 pts, with the use of contrast. In one patient, an interventricular septal defect was diagnosed. In 6 pts, a Doppler signal was only obtained with the use of contrast. In 15 pts, a RV/RAg superior to 40 mmHg was only obtained with the use of contrast. Of these, 9 have already been submitted to right heart cathetherism, that confirmed the diagnosis of pulmonary hypertension in 5 of them (56%). RV/RAg (P) was 44 ± 11 mmHg and RV/RAg (PC) was 54 ± 11 mmHg, p < 0,001.</p> <p>Conclusion</p> <p>1. The method is applicable in a large number of patients. 2. RV/RA gradients obtained at peak exercise are higher with the use of contrast, and the clinical meaning of this difference should be evaluated in a larger number of pts submitted to right heart cathetherism. The high number of false positives should lead to a higher diagnostic threshold. 3. This method seems to have relevant clinical value in the diagnosis of pulmonary arterial hypertension.</p
Exploring the use of skeletal tracking for cheaper motion graphs and on-set decision making in Free-Viewpoint Video production
In free-viewpoint video (FVV), the motion and surface appearance of a real-world performance is captured as an animated mesh. While this technology can produce high-fidelity recreations of actors, the required 3D reconstruction step has substantial processing demands. This means FVV experiences are currently expensive to produce, and the processing delay means on-set decisions are hampered by a lack of feedback. This work explores the possibility of using RGB-camera-based skeletal tracking to reduce the amount of content that must be 3D reconstructed, as well as aiding on-set decision making. One particularly relevant application is in the construction of Motion Graphs, where state-of-the-art techniques require large amounts of content to be 3D reconstructed before a graph can be built, resulting in large amounts of wasted processing effort. Here, we propose the use of skeletons to assess which clips of FVV content to process, resulting in substantial cost savings with a limited impact on performance accuracy. Additionally, we explore how this technique could be utilised on set to reduce the possibility of requiring expensive reshoots
Long-term biochemical results after high-dose-rate intensity modulated brachytherapy with external beam radiotherapy for high risk prostate cancer
Abstract Background Biochemical control from series in which radical prostatectomy is performed for patients with unfavorable prostate cancer and/or low dose external beam radiation therapy are given remains suboptimal. The treatment regimen of HDR brachytherapy and external beam radiotherapy is a safe and very effective treatment for patients with high risk localized prostate cancer with excellent biochemical control and low toxicity.</p
AmrZ is a major determinant of c-di-GMP levels in Pseudomonas fluorescens F113
The transcriptional regulator AmrZ is a global regulatory protein conserved within the pseudomonads. AmrZ can act both as a positive and a negative regulator of gene expression, controlling many genes implicated in environmental adaption. Regulated traits include motility, iron homeostasis, exopolysaccharides production and the ability to form biofilms. In Pseudomonas fluorescens F113, an amrZ mutant presents a pleiotropic phenotype, showing increased swimming motility, decreased biofilm formation and very limited ability for competitive colonization of rhizosphere, its natural habitat. It also shows different colony morphology and binding of the dye Congo Red. The amrZ mutant presents severely reduced levels of the messenger molecule cyclic-di-GMP (c-di-GMP), which is consistent with the motility and biofilm formation phenotypes. Most of the genes encoding proteins with diguanylate cyclase (DGCs) or phosphodiesterase (PDEs) domains, implicated in c-di-GMP turnover in this bacterium, appear to be regulated by AmrZ. Phenotypic analysis of eight mutants in genes shown to be directly regulated by AmrZ and encoding c-di-GMP related enzymes, showed that seven of them were altered in motility and/or biofilm formation. The results presented here show that in P. fluorescens, AmrZ determines c-di-GMP levels through the regulation of a complex network of genes encoding DGCs and PDEs
Evolutionary and pulsational properties of white dwarf stars
Abridged. White dwarf stars are the final evolutionary stage of the vast
majority of stars, including our Sun. The study of white dwarfs has potential
applications to different fields of astrophysics. In particular, they can be
used as independent reliable cosmic clocks, and can also provide valuable
information about the fundamental parameters of a wide variety of stellar
populations, like our Galaxy and open and globular clusters. In addition, the
high densities and temperatures characterizing white dwarfs allow to use these
stars as cosmic laboratories for studying physical processes under extreme
conditions that cannot be achieved in terrestrial laboratories. They can be
used to constrain fundamental properties of elementary particles such as axions
and neutrinos, and to study problems related to the variation of fundamental
constants.
In this work, we review the essentials of the physics of white dwarf stars.
Special emphasis is placed on the physical processes that lead to the formation
of white dwarfs as well as on the different energy sources and processes
responsible for chemical abundance changes that occur along their evolution.
Moreover, in the course of their lives, white dwarfs cross different
pulsational instability strips. The existence of these instability strips
provides astronomers with an unique opportunity to peer into their internal
structure that would otherwise remain hidden from observers. We will show that
this allows to measure with unprecedented precision the stellar masses and to
infer their envelope thicknesses, to probe the core chemical stratification,
and to detect rotation rates and magnetic fields. Consequently, in this work,
we also review the pulsational properties of white dwarfs and the most recent
applications of white dwarf asteroseismology.Comment: 85 pages, 28 figures. To be published in The Astronomy and
Astrophysics Revie
- …