3 research outputs found

    The Variation of the Galaxy Luminosity Function with Group Properties

    Full text link
    We explore the shape of the galaxy luminosity function (LF) in groups of different mass by creating composite LFs over large numbers of groups. Following previous work using total group luminosity as the mass indicator, here we split our groups by multiplicity and by estimated virial (group halo) mass, and consider red (passive) and blue (star forming) galaxies separately. In addition we utilise two different group catalogues (2PIGG and Yang et al.) in order to ascertain the impact of the specific grouping algorithm and further investigate the environmental effects via variations in the LF with position in groups. Our main results are that LFs show a steepening faint end for early type galaxies as a function of group mass/ multiplicity, with a much suppressed trend (evident only in high mass groups) for late type galaxies. Variations between LFs as a function of group mass are robust irrespective of which grouping catalogue is used, and broadly speaking what method for determining group `mass' is used. We find in particular that there is a significant deficit of low-mass passive galaxies in low multiplicity groups, as seen in high redshift clusters. Further to this, the variation in the LF appears to only occur in the central regions of systems, and in fact seems to be most strongly dependent on the position in the group relative to the virial radius. Finally, distance-rank magnitude relations were considered. Only the Yang groups demonstrated any evidence of a correlation between a galaxy's position relative to the brightest group member and its luminosity. 2PIGG possessed no such gradient, the conclusion being the FOF algorithm suppresses the signal for weak luminosity--position trends and the Yang grouping algorithm naturally enhances it.Comment: 20 pages, 29 figures, accepted for submission to MNRA

    Cayuga Lake Watershed

    No full text
    1_03128d0

    Mimicking Charged Host-Defense Peptides to Tune the Antifungal Activity and Biocompatibility of Amphiphilic Polymers

    No full text
    Invasive fungal infections impose a substantial global health burden. They cause more than 1.5 million deaths annually and are insufficiently met by the currently approved antifungal drugs. Antifungal peptides are a promising alternative to existing antifungal drugs; however, they can be challenging to synthesize, and are often susceptible to proteases in vivo. Synthetic polymers which mimic the properties of natural antifungal peptides can circumvent these limitations. In this study, we developed a library of 29 amphiphilic polyacrylamides with different charged units, namely, amines, guanidinium, imidazole, and carboxylic acid groups, representative of the natural amino acids lysine, arginine, histidine, and glutamic acid. Ternary polymers incorporating primary ammonium (lysine-like) or imidazole (histidine-like) groups demonstrated superior activity against Candida albicans and biocompatibility with mammalian cells compared to the polymers containing the other charged groups. Furthermore, a combination of primary ammonium, imidazole, and guanidinium (arginine-like) within the same polymer outperformed the antifungal drug amphotericin B in terms of therapeutic index and exhibited fast C. albicans-killing activity. The most promising polymer compositions showed synergistic effects in combination with caspofungin and fluconazole against C. albicans and additionally demonstrated activity against other clinically relevant fungi. Collectively, these results indicate the strong potential of these easily producible polymers to be used as antifungals
    corecore