28 research outputs found

    Selected Issues on Histograming on GPUs

    Get PDF
    The contemporary large scale measuring systems in the real-time environment make extensive use of histogramming as a tool for the experimental data quality monitoring. The processing of a large number of data channels requires a suitable computing power where the graphical processors seem to be well suited. Histogramming operations run on the central and graphics processing units are discussed. Results of the performance measurements including various configurations of the allocation of the histograms in various parts of the memory of used devices are presented

    Hypertensive effect of downregulation of the opioid system in mouse model of different activity of the endogenous opioid system

    Get PDF
    The opioid system is well-known for its role in modulating nociception and addiction development. However, there are premises that the endogenous opioid system may also affect blood pressure. The main goal of the present study was to determine the impact of different endogenous opioid system activity and its pharmacological blockade on blood pressure. Moreover, we examined the vascular function in hyper- and hypoactive states of the opioid system and its pharmacological modification. In our study, we used two mouse lines which are divergently bred for high (HA) and low (LA) swim stress-induced analgesia. The obtained results indicated that individuals with low endogenous opioid system activity have higher basal blood pressure compared to those with a hyperactive opioid system. Additionally, naloxone administration only resulted in the elevation of blood pressure in HA mice. We also showed that the hypoactive opioid system contributes to impaired vascular relaxation independent of endothelium, which corresponded with decreased guanylyl cyclase levels in the aorta. Together, these data suggest that higher basal blood pressure in LA mice is a result of disturbed mechanisms in vascular relaxation in smooth muscle cells. We believe that a novel mechanism which involves endogenous opioid system activity in the regulation of blood pressure will be a promising target for further studies in hypertension development

    Combined in silico and 19F NMR analysis of 5-fluorouracil metabolism in yeast at low ATP conditions.

    Get PDF
    The cytotoxic effect of 5-fluorouracil (5-FU) on yeast cells is thought to be mainly via a misincorporation of fluoropyrimidines into both RNA and DNA, not only DNA damage via inhibition of thymidylate synthase (TYMS) by fluorodeoxyuridine monophosphate (FdUMP). However, some studies on Saccharomyces cerevisiae show a drastic decrease in ATP concentration under oxidative stress, together with a decrease in concentration of other tri- and diphosphates. This raises a question if hydrolysis of 5-fluoro-2-deoxyuridine diphosphate (FdUDP) under oxidative stress could not lead to the presence of FdUMP and the activation of so-called ‘thymine-less death’ route. We attempted to answer this question with in silico modeling of 5-FU metabolic pathways, based on new experimental results, where the stages of intracellular metabolism of 5-FU in Saccharomyces cerevisiae were tracked by a combination of 19F and 31P NMR spectroscopic study. We have identified 5-FU, its nucleosides and nucleotides, and subsequent di- and/or triphosphates. Additionally, another wide 19F signal, assigned to fluorinated unstructured short RNA, has been also identified in the spectra. The concentration of individual metabolites was found to vary substantially within hours,however,theinitialsteady-statewaspreservedonlyforanhour,untiltheATPconcentration dropped by a half, which was monitored independently via 31P NMR spectra. After that, the catabolic process leading from triphosphates through monophosphates and nucleosides back to 5-FU was observed. These results imply careful design and interpretation of studies in 5-FU metabolism in yeast

    Arteriovenous oscillations of the redox potential: Is the redox state influencing blood flow?

    Get PDF
    OBJECTIVE Studies on the regulation of human blood flow revealed several modes of oscillations with frequencies ranging from 0.005 to 1 Hz. Several mechanisms were proposed that might influence these oscillations, such as the activity of vascular endothelium, the neurogenic activity of vessel wall, the intrinsic activity of vascular smooth muscle, respiration, and heartbeat. These studies relied typically on non-invasive techniques, for example, laser Doppler flowmetry. Oscillations of biochemical markers were rarely coupled to blood flow. METHODS The redox potential difference between the artery and the vein was measured by platinum electrodes placed in the parallel homonymous femoral artery and the femoral vein of ventilated anesthetized pigs. RESULTS Continuous measurement at 5 Hz sampling rate using a digital nanovoltmeter revealed fluctuating signals with three basic modes of oscillations: ∼ 1, ∼ 0.1 and ∼ 0.01 Hz. These signals clearly overlap with reported modes of oscillations in blood flow, suggesting coupling of the redox potential and blood flow. DISCUSSION The amplitude of the oscillations associated with heart action was significantly smaller than for the other two modes, despite the fact that heart action has the greatest influence on blood flow. This finding suggests that redox potential in blood might be not a derivative but either a mediator or an effector of the blood flow control system

    Native Structure-Based Peptides as Potential Protein–Protein Interaction Inhibitors of SARS-CoV-2 Spike Protein and Human ACE2 Receptor

    Get PDF
    Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is a positive-strand RNA virus that causes severe respiratory syndrome in humans, which is now referred to as coronavirus disease 2019 (COVID-19). Since December 2019, the new pathogen has rapidly spread globally, with over 65 million cases reported to the beginning of December 2020, including over 1.5 million deaths. Unfortunately, currently, there is no specific and effective treatment for COVID-19. As SARS-CoV-2 relies on its spike proteins (S) to bind to a host cell-surface receptor angiotensin-converting enzyme-2(ACE2), and this interaction is proved to be responsible for entering a virus into host cells, it makes an ideal target for antiviral drug development. In this work, we design three very short peptides based on the ACE2 sequence/structure fragments, which may effectively bind to the receptor-binding domain (RBD) of S protein and may, in turn, disrupt the important virus-host protein–protein interactions, blocking early steps of SARS-CoV-2 infection. Two of our peptides bind to virus protein with affinity in nanomolar range, and as very short peptides have great potential for drug development

    Quattor: Tools and Techniques for the Configuration, Installation and Management of Large-Scale Grid Computing Fabrics

    Get PDF
    This paper describes the quattor tool suite, a new system for the installation, configuration, and management of operating systems and application software for computing fabrics. At present Unix derivatives such as Linux and Solaris are supported. Quattor is a powerful, portable and modular open source solution that has been shown to scale to thousands of computing nodes and offers a significant reduction in management costs for large computing fabrics. The quattor tool suite includes innovations compared to existing solutions which make it very useful for computing fabrics integrated into grid environments. Evaluations of the tool suite in current large scale computing environments are presented

    Wybrane aspekty funkcjonowania Sejmu w latach 1997–2007

    Get PDF
    Praca recenzowana / peer-reviewed paperPraca naukowa finansowana ze środków na naukę w latach 2006–2008 jako projekt badawczy własny Nr 1 H02E 052 3

    Improvement of native structure-based peptides as efficient inhibitors of protein-protein interactions of SARS-CoV-2 spike protein and human ACE2

    Get PDF
    New pathogens responsible for novel human disease outbreaks in the last two decades are mainly the respiratory system viruses. Not different was the last pandemic episode, caused by infection of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). One of the extensively explored targets, in the recent scientific literature, as a possible way for rapid development of COVID-19 specific drug(s) is the interaction between the receptor-binding domain of the virus’ spike (S) glycoprotein and human receptor angiotensin-converting enzyme 2 (hACE2). This protein-protein recognition process is involved in the early stages of the SARS-CoV-2 life cycle leading to the host cell membrane penetration. Thus, disrupting this interaction may block or significantly reduce the infection caused by the novel pathogen. Previously we have designed (by in silico structure-based analysis) three very short peptides having sequences inspirited by hACE2 native fragments, which effectively bind to the SARS-CoV-2 S protein and block its interaction with the human receptor. In continuation of the above mentioned studies, here we presented an application of molecular modeling approach resulting in improved binding affinity of the previously proposed ligand and its enhanced ability to inhibit meaningful host-virus protein-protein interaction. The new optimized hexapeptide binds to the virus protein with affinity one magnitude higher than the initial ligand and, as a very short peptide, has also great potential for further drug development. The peptide-based strategy is rapid and cost-effective for developing and optimizing efficient protein-protein interactions disruptors and may be successfully applied to discover antiviral candidates against other future emerging human viral infections

    The Palladium(II) Complex of A β4-16 as Suitable Model for Structural Studies of Biorelevant Copper(II) Complexes of N-Truncated Beta-Amyloids

    Get PDF
    The Aβ4-42 peptide is a major beta-amyloid species in the human brain, forming toxic aggregates related to Alzheimer's Disease. It also strongly chelates Cu(II) at the N-terminal Phe-Arg-His ATCUN motif, as demonstrated in Aβ4-16 and Aβ4-9 model peptides. The resulting complex resists ROS generation and exchange processes and may help protect synapses from copper-related oxidative damage. Structural characterization of Cu(II)Aβ4-x complexes by NMR would help elucidate their biological function, but is precluded by Cu(II) paramagneticism. Instead we used an isostructural diamagnetic Pd(II)-Aβ4-16 complex as a model. To avoid a kinetic trapping of Pd(II) in an inappropriate transient structure, we designed an appropriate pH-dependent synthetic procedure for ATCUN Pd(II)Aβ4-16, controlled by CD, fluorescence and ESI-MS. Its assignments and structure at pH 6.5 were obtained by TOCSY, NOESY, ROESY, 1H-13C HSQC and 1H-15N HSQC NMR experiments, for natural abundance 13C and 15N isotopes, aided by corresponding experiments for Pd(II)-Phe-Arg-His. The square-planar Pd(II)-ATCUN coordination was confirmed, with the rest of the peptide mostly unstructured. The diffusion rates of Aβ4-16, Pd(II)-Aβ4-16 and their mixture determined using PGSE-NMR experiment suggested that the Pd(II) complex forms a supramolecular assembly with the apopeptide. These results confirm that Pd(II) substitution enables NMR studies of structural aspects of Cu(II)-Aβ complexes

    Autonomic Management of Large Clusters and Their Integration into the Grid

    Get PDF
    We present a framework for the co-ordinated, autonomic management of multiple clusters in a compute center and their integration into a Grid environment. Site autonomy and the automation of administrative tasks are prime aspects in this framework. The system behavior is continuously monitored in a steering cycle and appropriate actions are taken to resolve any problems. All presented components have been implemented in the course of the EU project DataGrid: The Lemon monitoring components, the FT fault-tolerance mechanism, the quattor system for software installation and configuration, the RMS job and resource management system, and the Gridification scheme that integrates clusters into the Grid
    corecore