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Objective: Studies on the regulation of human blood flow revealed several modes of 

oscillations with frequencies ranging from 0.005 to 1 Hz. Several mechanisms were proposed 

that might influence these oscillations, such as the activity of vascular endothelium, the 

neurogenic activity of vessel wall, the intrinsic activity of vascular smooth muscle, 

respiration, and heartbeat. These studies relied typically on non-invasive techniques, for 

example, laser Doppler flowmetry. Oscillations of biochemical markers were rarely coupled 

to blood flow.  

Methods: The redox potential difference between the artery and the vein was measured by 

platinum electrodes placed in the parallel homonymous femoral artery and the femoral vein of 

ventilated anesthetized pigs. 

Results: Continuous measurement at 5 Hz sampling rate using a digital nanovoltmeter 

revealed fluctuating signals with three basic modes of oscillations: ∼ 1, ∼ 0.1 and ∼ 0.01 Hz. 

These signals clearly overlap with reported modes of oscillations in blood flow, suggesting 

coupling of the redox potential and blood flow. 

Discussion: The amplitude of the oscillations associated with heart action was significantly 

smaller than for the other two modes, despite the fact that heart action has the greatest 

influence on blood flow. This finding suggests that redox potential in blood might be not a 

derivative but either a mediator or an effector of the blood flow control system. 

Keywords: blood flow, arteriovenous potential, EMF, electromotive force, oscillations, redox 

state
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Introduction 

The blood flow control system manifests itself in rhythmic activities 1 that have been 

frequently studied to understand the mechanisms of cardiovascular control. Several distinct 

frequencies have been identified, such as metabolic (0.008–0.02 Hz), neurogenic (0.02–0.05 

Hz), myogenic (0.05–0.15 Hz), respiratory (0.15–0.4 Hz), and cardiac (0.4–2.0 Hz) 2–4. The 

wavelet-based method of analysis of blood flow oscillations has been adopted for further 

research on cardiovascular control under various conditions 5–8. However, we still do not 

understand the explicit physiologic meanings of these characteristic frequencies, and the 

underlying mechanisms require further validation at a biochemical level. The main issue is 

that oscillations in blood apply not only to blood flow or respiratory gases but also to blood 

pressure (so called Mayer waves), pH 9, or blood volume 10, not to mention the various 

oscillations that appear in pathological states.  

The Fick principles stem from an idea that arteriovenous concentration differences can be 

used to determine the state of metabolism 11. As the electrochemical potential measured 

between blood in the artery and vein was assumed to be an effect of pH and the partial 

pressures of O2 and H2, platinum electrodes with the aid of injection or inhalation of hydrogen 

were used to detect intravascular shunts 12. As the arteriovenous concentrations of metabolites 

were extensively studied 13–15, the researchers’ attention shifted to measurements of certain 

blood components (such as pH or pCO2) with specialized electrodes. In particular, the 

arteriovenous CO2 difference was frequently measured – it was assessed as a marker of, 

among others, hemodynamic status 16, septic shock 17, regional ischemic or hypoxic hypoxia 

18. Recently, arteriovenous differences of blood gases were supplemented by markers of 

anaerobic metabolism (such as lactate) and outperformed other methods in the assessment of 

the hemodynamic state of patients with circulatory failure 19. Only recently, Ivanisevic and 

coworkers systematically assessed arteriovenous blood metabolomics via targeted and 

untargeted mass spectrometry, revealing a wide spectrum of changes and concluding that this 

type of analysis might provide a new means of identifying possible metabolic pathway 

disruptions 20.  

While it is common to consider redox pairs as a major driving force regulating biological 

events 21–23, biochemical constraints related to enzyme availability often make them 



 

indicators, not regulatory forces 24,25. All of the factors mentioned above (hemodynamic 

status, septic shock, and hypoxia) as well as many others are collectively represented by the 

state of blood redox components. A direct influence of certain redox pairs has been shown for 

blood metabolism 26 and for blood flow 27. All of the above suggests that arteriovenous redox 

potential difference must be coupled to blood flow, at least at the non-neurogenic level. The 

difference in redox potential between arterial and venous blood was assessed several times. 

The redox potential was either measured directly 28,29 or assessed using concentrations of 

lactate/pyruvate couple 30. In addition, the redox potential of arterial and venous blood was 

measured simultaneously with the same reference electrode 31. In all cases, the measured 

values were in the range of +/- 200 mV. However, given that the electrode preparation 

protocol strongly influences the results of redox potential measurements of blood 
32

, it is 

likely that all of these values bear a significant error. None of the studies mentioned above 

used the arteriovenous redox potential difference to assess blood flow. 

In this study, we monitored the physiological and induced changes in the arteriovenous 

potential difference on the timescales of a second to dozens of minutes using 1-5 Hz sampling 

rates. Oscillations of different frequencies were identified in the measured signal, with three 

clear major modes most probably stemming from heart action, breathing and possibly 

metabolism – similar to studies on blood flow oscillations. The amplitudes of the oscillations 

with the highest frequency (cardiac) were much lower than the other oscillations. This 

observation suggests a presence of complex relationships between  the redox status of the 

blood and the blood flow; as such, it opens a new avenue for research on cardiovascular 

control mechanisms. 

Materials and Methods 

Animal preparation and placement of electrodes  

The study protocol was approved by the Local Ethics Committee at Warsaw University of 

Life Sciences in accordance with the European Communities Council Directive of 24 

November 1986 (86/609/EEC). The studies were performed on six polish landrace sows (60-

95 kg body weight). During the entire study, the sows were healthy. Intramuscular injection 

with Azaperone (Stresnil, 3 mg/kg b.wt., i.m., Janssen Pharmaceutica, Belgium) was 

administered as the sedative management at the beginning. Afterwards, the combination of 

Medetomidine (2 μg/kg ScanVet, Poland), Butorphanol (Butomidor 0.025 mg/kg b.wt., i.m., 



 

Richter Pharma AG) and Ketamine (Ketamina 10%, 20 mg/kg b.wt., i.v., Pharmanovo GmbH, 

Germany) was used as the preanesthetic. The induction of general anesthesia was performed 

with intravenous injection with propofol (3 mg/kg b.wt., i.v., Fresenius Kabi, Germany). The 

endotracheal intubation was made, allowing for the maintenance of the general anesthesia 

with isoflurane (Aerrane 5-2 ‰, Baxter) under the control ventilation (IPPV). The animals 

were sacrificed with pentobarbital (Morbital 0.5 ml/kg Biowet Pulawy, Poland) at the end of 

the research procedure. 

Arterial and femoral sheaths (4F) were placed bilaterally into the external iliac artery and the 

vein. Two standard diagnostic catheters (4F fixed curve, 4 – pole diagnostic catheters with 

2,2,2 or 5,5,5 electrode spacing, St. Jude Medical, MN, USA) were placed in the parallel 

femoral artery and the femoral vein with x-ray control (Fig. 1). 

The maintenance of general anesthesia was performed with isoflurane (1,5 vol. %). The signal 

was stabilized typically after 2 minutes from the probes via intra-arterial insertion. The data 

were collected 5 times per second and 1 time per second, while the respiration rate was 

maintained at either 8 times per minute or 12 times per minute. Due to the limitations of data 

acquisition equipment, a lower sampling rate was required for simultaneous monitoring of 

two or more voltaic channels.. The blood oxygen saturation level was 100% throughout all the 

experiments to rule out the possibility that we measure saturation oscillations caused by 

hypoxic conditions 33,34. 

Signal acquisition 

The dedicated system was set up on the basis of Agilent 34970A Data Acquisition/Switch unit 

equipped with 34901A 20-channel multiplexer module, using either Agilent BenchLink Data 

Logger 3 software (tested by us to be sufficient for 4 galvanically separated channels with a 1 

Hz sampling rate) or a built in-house application that enabled the sampling rate of 5 Hz for a 

single channel. Both programs enabled an on-line graphical interface. Agilent company 

guaranties 6½ resolution with 0.004% accuracy and a thermal drift smaller than 3 µV/deg 

outside the reference temperature range of 18-28 ºC (291-301 K). Altogether, the above 

indicates that eventual biases should not exceed 50 µV. The partial oxygen concentration was 

in parallel monitored with the aid of a MOX-4 Gas Sensor (MediceL®) attached to the  

subsequent channel of the multiplexer.  



 

The differences in the arteriovenous potential were monitored using pairs of sensors located in 

parallel (see Fig. 1A). In all the setups, the terminal pairs were found not applicable due to the 

resulting extremely high noise level, probably due to vibrations from the terminal parts of the 

probes caused by irregular blood flow.  

Data analysis 

The signals were analyzed using R language and its procedures for signal analysis (package 

stats), including cross-correlation analyses. First of all, linear trends were removed from the 

data prior to analysis using the “detrend” function from the package pracma. Analysis of 

oscillations were done using two methods, Lomb-Scargle periodogram and wavelet power 

spectrum.  

In the first case, we have proceeded under the assumption that data are not sampled evenly 

(standard deviation during 5-Hz sampling was 0.0005 s). Therefore the assessment of 

statistical significance of observed oscillations was performed using the Lomb-Scargle 

periodogram for unevenly sampled data implemented in the lomb package. Oscillations were 

judged to be statistically significant if their p-value was lower than 0.01. 

In addition, we analyzed the data using the WaveletComp package to obtain the wavelet 

spectrum of the signal. Data were spread evenly using “approx.” function implemented in R 

stats library. Computations of wavelet spectrum were done using 100 simulations (default of 

WaveletComp package) with surrogate time series generated with while noise model. On all 

wavelet plots contour lines delineate areas for which p-value was lower than 0.1. Coherence 

analysis was done using the same package. Arrows indicate areas with p-value lower than 

0.05.  

Results 

Single channel monitoring 

Electrochemical potential difference between arterial and venous blood was initially 

monitored for 30 minutes at a 5-Hz sampling rate but was restricted to a single channel. 

During the experiment, the respiration rate was precisely controlled at 8 breaths per minute in 

two 10-minute blocks. During the central 10-minute period (10-20), the respiration was 

increased up to 12 breaths per minute. Oscillations of the same frequency representing the 

actual respiratory rate were observed in both cases (see Fig. 2, panels A and B). The increase 



 

in the respiratory rate resulted in a decrease in the amplitude of the EMF oscillations: from ca. 

1 mV at 8 bpm to ca. 0.5 mV at 12 bpm. Cross-correlation analyses of the breathing signal 

and the measured potential revealed a significant correlation of the two, with breathing 

leading by ca. 1.2 s to the redox potential in blood. In addition, the interference of respiratory-

related oscillations with higher frequency oscillations (~ 1 Hz, 50 µV amplitude) could have 

been easily resolved. The latter effect should be clearly related to cardiac actions (observed at 

60-80 beats per minute).  

Wavelet analysis confirmed the existence of the dominant EMF oscillation of the frequency 

consistent with the respiration rate (Fig. 2C). The observed high-frequency modulations could 

also be identified as a band of signals located at periods 0.3-1, although these were not judged 

as statistically significant using this method. These values are consistent with the heart beat 

rates monitored during the experiment. Variations in the EMF induced by the heart beat were 

assessed by correction for respiratory oscillations by removing from the data the regular 

sinusoidal signal. The resulting variability in amplitude and frequency is shown in blue in Fig. 

3. The unambiguous evidence of fast low-amplitude oscillations (attributed to the effect of 

cardiac action) was supported by statistical analysis using the Lomb-Scargle periodogram 

method. 

The third putative region revealed slow oscillations, the frequency of which could be 

estimated in the range 0.5-1 min-1 (Fig. 2C), which was also judged to be statistically 

significant in the periodogram analysis. However, often, the frequency of these oscillations 

was not sharply defined.  

Multiple channel monitoring 

In the succeeding experiment, for a comparison, we in parallel monitored four signals at a 1-

Hz sampling rate. Respiration-induced oscillations were again observed at exactly the same 

frequency as the respiratory rate, and the amplitudes were approximately 1 mV, as observed 

earlier. The phase of these oscillations was clearly synchronized with respiratory action: the 

rise of the signal indicated exhalation, while the drop indicated inhalation. The signal 

appeared to be aligned with the O2 oscillations in breathing air (Fig. 4A). Using cross-

correlation analysis, we found that in all four pairs, the measured signal had a similar course, 

although it appears that either the electrodes had a different sensitivity or the location (e.g., 

touching the vessel wall) influenced the signal because there were substantial differences in 

its absolute values (Fig. 1 A). Wavelet coherence analysis of signals from electrodes and from 



 

oxygen sensor indicate high coherence between the two, with the measured signal almost 

consistently lagging across the timeframe of the measurement by roughly one-fourth of the 

period (Fig. 4B). This value is consistent with the results from the cross-correlation analyses. 

A presence of areas of statistically significant coherence between the breathing and the redox 

potential at higher periods (Fig. 4B) requires further investigation, since these frequencies are 

not always identified in the wavelet power spectrum of the oxygenation signal.  

Spectral density analyses again clearly evidenced respiration-related oscillations albeit slow 

changes of the frequency 0.3-0.4 min-1, and their first harmonics at 0.7 min-1 were also found 

to be statistically significant. Lomb-Scargle periodogram analyses again clearly evidenced 

cardiac oscillations, respiration-related oscillations, and their putative harmonics (Fig. 3 B).  

Signal variability 

Placement of the electrodes and electrode exhaustion played a substantial role in the quality of 

the acquired signal. As long as the signal was still in the range of tens of mV, the oscillatory 

properties were clearly visible in all the animals. Small shifts (on the order of millimeters) in 

the placement could and indeed did dramatically worsen the quality of the signal. In addition, 

electrodes were exhausted to the point that almost no signal was acquired on the order of 

hours. Due to these issues, comparative analysis of the data was not possible because we did 

not acquire data in the same physiological stage for any animal.  

Discussion 

Here, we report the analysis of oscillatory modes in the arteriovenous redox potential of 

blood. The three modes of observed oscillations agree quite well with the three major peak 

oscillations of blood flow (see 35 and references therein) – respiratory frequency, heart beat 

frequency and several floating slow modes of approximately 0.05 Hz. The same frequencies 

were found in blood pressure, heart-rate variability, or peripheral blood flow (although the 

latter exhibits the most complex low-frequency component).  

Cardiac action and respiratory action result in changes in the flow of the blood. Periodic 

changes in the velocity of blood flowing around the electrodes in arteries can reach 10-fold 

but typically are approximately 5-fold 36. Such changes are reflected in the measurement, as 

reactions on the electrodes will be influenced by oscillatory changes of the environment 



 

around the electrode. No biochemical process in the blood has sufficient speed to be 

responsible for the changes in the signal. 

Respiratory oscillations of the measured signal are supplemented by the large arterial 

oscillations of oxygen partial pressure that naturally occur in blood due to breathing. The 

characteristics of the response of the signal to the ventilation period is similar to previously 

recorded measurements of pH oscillations caused by breathing in arterial blood 37,38 and in 

medullary extracellular fluid 39. Coherence between the measured signal and the oxygenation 

levels observed in our experiments does not seem to be surprising, given the location of the 

electrodes. The coherence between skin blood flow and oxygen saturation in limbs has been 

already observed 40. However that study failed to observe the coherence where the 

measurements were from deeper tissues of arms and legs. The most plausible explanation is 

the complexity of the tissue structure and, resulting from that, very different power spectra of 

oxygen saturation. In this study, where isolated vessels were studied, the signal was less prone 

to surrounding noise of the tissues. As for the source at biochemical level, the putative 

candidate for this redox reaction is any pH-dependent one, such as in the NAD+-NADH 

couple.  

The oscillations with the longest period (ca. 100 s, frequency of ~ 0.01 Hz) are difficult to 

interpret directly from metabolic processes or from oxygen partial pressure. It has been 

already suggested that these are metabolic-related frequencies 2. Further studies on the 

influence of vasodilators on blood flow pointed to an endothelium-mediated mechanism 
3
. 

However, these studies were focused on peripheral blood flow, where endothelium-based 

vasodilation has a substantial effect on blood flow. In major vessels, endothelium-based 

vasodilation is not likely to have significant effect on blood flow. In the search of the 

mechanisms, we reviewed the knowledge regarding erythrocyte metabolism. Hald and 

coworkers have built a model of metabolic entrainment of erythrocytes based on oscillatory 

changes in the partial pressures of oxygen and carbon dioxide due to travel between arterial 

and venous blood 41. This model predicts an oscillatory overshoot of the central metabolites of 

erythrocyte’s glycolysis, with a period comparable to the circulation time. Spikes in the 

lactate flux that presumably stem from the overshooting phenomena of erythrocyte glycolysis 

have a period that is in agreement with the observed oscillations. The lack of a well-defined, 

narrow signal is easily explainable by different circulatory travel times of red blood cells. 

Lactate oscillations of a similar period (few minutes) have been shown for cerebral spinal 

fluid 42; unfortunately, no experimental confirmation for blood exists yet. Further support for 



 

this hypothesis stems from results of Ivanisevic and coworkers 20, as they have shown that 

lactate levels are significantly different between arterial and venous blood. However, further 

studies on dynamics of the lactate metabolism should be performed. 

As shown, the oscillations in the redox potential differences between arterial and venous 

blood are explainable by known processes in the circulatory system. Given the larger data 

collection times, we would probably observe other oscillations, such as insulin spikes or 

circadian clock parameters. However, such observation would require a novel experimental 

setup, as our experiments clearly have shown the limits of standard platinum catheters. 

Obviously, our work again raises the question of whether the absolute values of that potential 

are also meaningful and interpretable. Despite numerous attempts at such an interpretation 

13,16,28,29,31
, at this point, we support the general premise of the Flohe essay on the GSSG-GSH 

couple 24 that redox potential is more of an analytical tool, i.e., an indicator, and not the direct 

cause of the changes in the system. To have a regulatory role, several redox couples should be 

allowed to reach equilibrium, which is often not the case. However, further studies are 

required to clarify the putative link between blood flow and oscillations of biochemical 

markers in blood. 
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Figure captions 

Fig. 1. The placement of electrodes and alignment of their signal. A: Arrows indicate which 

pair of electrodes were used for measurement in the majority of experiments. Four pairs were 

used for multiple channel monitoring. B: Alignment of the signal for the experiments with 

multiple channel monitoring. 

Fig. 2. Agreement between oscillations in redox potential and breathing. Fragment of the 

oscillations for two breathing frequencies, 8 per minute (panel A) and 12 per minute (panel 

B). The scale is preserved – faster breathing resulted in visibly lower amplitude of 

oscillations. Panel C shows the wavelet analysis of the measured signal. The change in period 

of the observed oscillations due to change in the breathing frequency is clearly visible. Heart 

beat oscillations are seen as a wide band in the period range of 0.3-1. Slow oscillations are 

visible, albeit not statistically significant, in this measured window. 

Fig. 3. A: Lomb-Scargle periodogram – dashed line denotes threshold of statistical 

significance (p-value of 0.05). Oscillations with normalized power above dashed line are 

statistically significant. B: Observed signal (red), dominating the sinusoid contribution (black) 

and the difference between these two (blue) that represents oscillations induced by the cardiac 

action. 

Fig. 4. A: Alignment between oxygen levels in breathing air (upper panel) and the redox 

potential difference between arterial and venous blood (lower panel). B: Wavelet coherence 

analysis of oxygenation signal and redox potential. Areas delineated by white contour are 

areas with significance level of 0.1. Arrows indicate phase difference and are placed in areas 

of p-value of 0.05 or lower. 

 

 


