10,591 research outputs found

    Low-angle normal faults-low differential stress at mid crustal levels

    Get PDF
    A simple model for frictional slip on pre-existing faults that considers the local stress state near the fault and the effect of non-hydrostatic fluid pressures predicts that low-angle normal faulting is restricted to areas of the crust characterized by low differential stress and nearly lithostatic fluid pressures. The model considers frictional slip on a cohesionless low-angle normal fault governed by the failure criterion tau = mu sub f (sigma (*) sub n) =mu sub f (sigma sub n - P sub f) where tau and sigma sub n are the shear and normal stresses across the fault plane, mu sub f is the static coefficient of friction, and P sub f is the pore fluid pressure. As a first approximation, the model considers a vertical greatest principal compressive stress, sigma sub 1. It is apparent that if slip on low-angle normal faults is governed by the avove frictional failure criterion, slip on the low-angle normal fault occurs only if the least effective principal stress, sigma (*) sub 3 = sigma sub 3 - P sub f, is tensile, whenever tan superscrip -1(mu sub f d, where d is the dip of the fault. If detachment faulting occurs at any significant depth in the crust, P sub f sigma sub 3 is required. In light of this conclusion I allow P sub f to vary as necessary to allow slip on the low-angle normal fault

    Development of a radiation-hard CMOS process

    Get PDF
    It is recommended that various techniques be investigated which appear to have the potential for improving the radiation hardness of CMOS devices for prolonged space flight mission. The three key recommended processing techniques are: (1) making the gate oxide thin. It has been shown that radiation degradation is proportional to the cube of oxide thickness so that a relatively small reduction in thickness can greatly improve radiation resistance; (2) cleanliness and contamination control; and (3) to investigate different oxide growth (low temperature dry, TCE and HCL). All three produce high quality clean oxides, which are more radiation tolerant. Technique 2 addresses the reduction of metallic contamination. Technique 3 will produce a higher quality oxide by using slow growth rate conditions, and will minimize the effects of any residual sodium contamination through the introduction of hydrogen and chlorine into the oxide during growth

    Application of modern control theory to the design of optimum aircraft controllers

    Get PDF
    The synthesis procedure presented is based on the solution of the output regulator problem of linear optimal control theory for time-invariant systems. By this technique, solution of the matrix Riccati equation leads to a constant linear feedback control law for an output regulator which will maintain a plant in a particular equilibrium condition in the presence of impulse disturbances. Two simple algorithms are presented that can be used in an automatic synthesis procedure for the design of maneuverable output regulators requiring only selected state variables for feedback. The first algorithm is for the construction of optimal feedforward control laws that can be superimposed upon a Kalman output regulator and that will drive the output of a plant to a desired constant value on command. The second algorithm is for the construction of optimal Luenberger observers that can be used to obtain feedback control laws for the output regulator requiring measurement of only part of the state vector. This algorithm constructs observers which have minimum response time under the constraint that the magnitude of the gains in the observer filter be less than some arbitrary limit

    Ground correlation investigation of thruster spacecraft interactions to be measured on the IAPS flight test

    Get PDF
    Preliminary ground correlation testing has been conducted with an 8 cm mercury ion thruster and diagnostic instrumentation replicating to a large extent the IAPS flight test hardware, configuration, and electrical grounding/isolation. Thruster efflux deposition retained at 25 C was measured and characterized. Thruster ion efflux was characterized with retarding potential analyzers. Thruster-generated plasma currents, the spacecraft common (SCC) potential, and ambient plasma properties were evaluated with a spacecraft potential probe (SPP). All the measured thruster/spacecraft interactions or their IAPS measurements depend critically on the SCC potential, which can be controlled by a neutralizer ground switch and by the SPP operation

    What is the impact of wellbeing on the physical activities of occupational therapy for a child with dyspraxia?

    Get PDF
    Structured and supervised physical activities are engaged with during a child’s schooling career are included under the domain of PE (Bailey, 2005). Therefore, the investigation of occupational therapy (OT) within school was deemed an interesting approach to research the implementation of physical activities of OT. Also, as wellbeing is a key focus within schools at this time, it is important to determine what the impact of wellbeing would be on physical activities of OT. This thesis provides a historical overview of OT, physical activity, dyspraxia and wellbeing in order to explain the trajectory of what is the impact of wellbeing on physical activities of OT for a child with dyspraxia. This research involved a case study for over three school terms within a year for a child with dyspraxia. During this time, qualitative and quantitative observations were undertaken during OT sessions on Friday lunchtimes and a wellbeing questionnaire every Friday on this child. The analysis of findings demonstrated successful and unsuccessful body movements of the OT activities following the trends of wellbeing that Sue portrayed throughout the study. Findings from this study showed that despite Sue having OT intervention to aid Sue’s access to everyday participation in life, her trends of wellbeing that were measured, varied in terms of positive and negative directions in accordance with what was going on in her life. As a result, other contributing factors such as parental influence and friends that affected wellbeing influenced successful and unsuccessful body movements of the physical activities of OT, making this study original and authentic, thus ensuring wellbeing is of the uppermost importance for the longevity of holistic development

    Childhood Maltreatment and BMI Trajectories to Mid-Adult Life: Follow-Up to Age 50y in a British Birth Cohort.

    Get PDF
    Childhood maltreatment including abuse and neglect has been associated with adult obesity, but evidence on life-course development of obesity or BMI gain is unclear. We aim to establish whether childhood maltreatments are related to obesity or BMI at different life-stages 7y-50y and to identify possible explanations for associations

    Preliminary investigation of high power microwave plasmas for electrothermal thruster use

    Get PDF
    Results are reported from preliminary tests to evaluate the high power microwave electrothermal thruster (MET) concept, which employs a free-floating plasma discharge maintained by applied CW microwave power to heat a propellant gas flow. Stable plasmas have been created and maintained in helium (He), nitrogen (N2), and hydrogen (H2) as propellants in both the TM(sub 011) and TM(sub 012) modes at discharge pressures from 10 Pa to 69 kPa. Reproducible starting conditions of pressure and power have been documented for all the plasmas. Vortical inflow of the propellant gas was observed to cause the formation of on-axis 'spike' plasmas. The formation and unformation conditions of these plasmas were studied. Operation in the spike plasma condition enables maximum power absorption with minimum wall heating and offers maximum efficiency in heating the propellant gas. In the spike condition, plasmas of the three propellant gases were investigated in an open channel configuration to a maximum applied power level of 11.2 kW (in N2). Microwave power coupling efficiencies of over 90 percent were routinely obtained at absorbed power levels up to 2 kW. Magnetic nozzle effects were investigated with a superconducting solenoid Al magnet applying a high magnetic field to the plasmas in and exiting from the discharge tube

    Solutions for discharge chamber sputtering and anode deposit spalling in small mercury ion thrusters

    Get PDF
    Proposed solutions to the problems of sputter erosion and sputtered material spalling in the discharge chamber of small mercury ion thrusters are presented. The accelerated life test evaluated three such proposed solutions: (1) the use of tantalum as a single low sputter yield material for the exposed surfaces of the discharge chamber components subject to sputtering, (2) the use of a severely roughened anode surface to improve the adhesion of the sputter-deposited coating, and (3) the use of a wire cloth anode surface in order to limit the size of any coating flakes which might spall from it. Because of the promising results obtained in the accelerated life test with anode surfaces roughened by grit-blasting, experiments were carried out to optimize the grit-blasting procedure. The experimental results and an optimal grit-blasting procedure are presented

    Development of a high power microwave thruster, with a magnetic nozzle, for space applications

    Get PDF
    This paper describes the current development of a high-power microwave electrothermal thruster (MET) concept at the NASA Lewis Research Center. Such a thruster would be employed in space for applications such as orbit raining, orbit maneuvering, station change, and possibly trans-lunar or trans-planetary propulsion of spacecraft. The MET concept employs low frequency continuous wave (CW) microwave power to create and continuously pump energy into a flowing propellant gas at relative high pressure via a plasma discharge. The propellant is heated to very high bulk temperatures while passing through the plasma discharge region and then is expanded through a throat-nozzle assembly to produce thrust, as in a conventional rocket engine. Apparatus, which is described, is being assembled at NASA Lewis to test the MET concept to CW power levels of 30 kW at a frequency of 915 MHz. The microwave energy is applied in a resonant cavity applicator and is absorbed by a plasma discharge in the flowing propellant. The ignited plasma acts as a lossy load, and with optimal tuning, energy absorption efficiencies over 95 percent (based on the applied microwave power) are expected. Nitrogen, helium, and hydrogen will be tested as propellants in the MET, at discharge chamber pressures to 10 atm
    • …
    corecore