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APPLICATION OF MODERN CONTROL THEORY TO THE DESIGN OF OPTIMUM AIRCRAFT CONTROLLERS

Leo J. Power
Ames Research Center, NASA, Moffett Field, Calif. 94035

INTRODUCTION

One area of research which offers a great deal of hope that an inexpensive, systematic,
control system synthesis procedure applicable to a large class of problems can be
developed is the application of optimal control theory to time-invariant linear systems
with quadratic performance criteria. For this class of problems, a library of subrou-
tines has been developed at Ames Research Center(1) which can quickly perform all of
the required computations.

The synthesis procedure presented in this paper is based on the solution of the output
regulator problem of linear optimal control theory for time-invariant systems.(2) By

this technique, solution of the matrix Riccati equation leads to a constant linear
feedback control law for an output regulator which will maintain a plant in a particu-
lar equilibrium condition in the presence of impulse disturbances.

The use of this technique as a basis for flight-control system design has many very
appealing advantages over root locus and frequency domain techniques. Some of these
advantages are that this technique is completely automated after selection of a few
parameters in a performance criterion; can easily handle multiple input-output systems;
and is generally applicable to any controllable and observable system whose equations
can be put into linear, constant coefficient state space form. Further advantages are
that the resulting feedback control law guarantees system stability;(3) requires no
dynamic compensation; and is optimal in the sense that it minimizes a quadratic cost
function.

On the other hand, some fundamental difficulties must be overcome. One of these is
that the regulator tends to minimize the effects of any disturbance, including desired
state changes attempted by the pilot. To avoid the necessity of disengaging the regu-
lator while performing a maneuver, thereby losing the advantage of the augmented sta-
bility, a feedforward control law must be computed which can be superimposed upon the
regulator and which will result in a desired maneuver on command. A second difficulty
is that the control law resulting from the solution of the matrix Riccati equation
requires measurement of the entire state vector. If this is not possible or desirable,
then either the approach must be abandoned or an adequate estimate of the unmeasurable
states must be constructed. This can be accomplished satisfactorily, and with a mini-
mum order dynamic compensator, with a Luenberger observer.(4,5) However, construction
of an observer for high order systems can be a very tedious exercise that has, in the
past, been carried out largely by hand. Before observer theory can be included in a
general systematic synthesis procedure, an algorithm must be found to construct
observers that can be carried out in a straightforward manner by a digital computer.

This paper presents two simple algorithms that can be used in an automatic synthesis
procedure for the design of maneuverable output regulators requiring only selected
state variables for feedback.

The first algorithm is for the construction of optimal feedforward control laws that
can be superimposed upon a Kalman output regulator and that will drive the output of a

plant to a desired constant value on command.

The second algorithm is for the construction of optimal Luenberger observers that can
be used to obtain feedback control laws for the output regulator requiring measurement
of only part of the state vector. This algorithm constructs observers which have mini-
mum response time under the constraint that the magnitude of the gains in the observer
filter be less than some arbitrary limit.
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The algorithms can be useful for the design of flight controllers that are required
to track a step command input using only selected state variables for feedback, but
where zero steady-state error (i.e., integral feedback) is not a requirement. In many

practical cases, the pilot can be expected to perform this function.

Illustrative examples of the use of both algorithms for the design of flight controllers
for the Augmentor Wing Jet STOL Research Aircraft are presented.

1. SOLUTION OF THE CONSTANT OUTPUT TRACKING PROBLEM

Let a controllable and observable plant be represented by

k(t) = Fx(t) + Gu(t) ; x(to) = xo0 (1.1)

y(t) = Hx(t) (1.2)

where x is an n-dimensional column vector defined as the state; y, a p-dimensional
column vector defined as the output; and u, an m-dimensional column vector defined
as the control or input to the plant. The matrices F, G, and H are constant, rec-
tangular, and have appropriate dimension.

We would like to derive a control law with the properties of an optimal output regula-
tor and, in addition, with the capability of driving the output y(t) to some desired
constant value Yd on command. Generally, this can only be accomplished by driving
the control vector u(t) to some constant value ur which is required to satisfy the
steady-state solution of (1.1-2), i.e.,

Fxr + Gur = 0 (1.3)

Ya = Hxr (1.4)

where the equilibrium point represented by the pair [xr,ur] is unknown. A control law
that will simultaneously drive the output y(t) toward Yd and the control u(t) toward
u
r

for an arbitrary choice of both Yd and ur may be obtained by minimizing a scalar
cost functional of the form

V[x(to),to,T;u(.)] = 2 fT [lly(t) - Ydll + lUu(t) - Ur,.1]dt (1.5)
to

where the matrices Q and R are symmetric, positive definite, constant, and of appro-
priate dimension. The symbol IlylIQ represents y'Qy where the prime indicates
transpose.

The cost functional (1.5) contains an unknown constant vector ur. In addition to the
control law that minimizes (1.5), the vector ur must be determined so that the opti-
mal scalar cost is finite as the final time T approaches infinity. This will ensure
that the resulting optimal control law will drive the output y(t) to Yd'

This tracking problem can be put in the form of an output regulator problem by defining
new variables:

u(t) = u(t) - ur ; y(t) = y(t) - Yd (1.6)

x'(t) = [x(t) u r yd ] (1.7)

and new matrices:

F G 0 
[= O ; ; = [H 0 -I] . (1.8)
0Tn b

Then for a plant represented by

x(t) = Fx(t) + NW(t) ; x'(to ) = [xo
· ur yd] (1.9)

y(t) = R(t) (1.10)
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the control law that minimizes a quadratic cost functional

- i 2 t+1 1~
V(R(to0),to'T;U-(')) = -f [y t)ul

o
is given by

(t) 2 R]dtR

(1.12)U*(t) = -R-1G'P(t,T)x(t)

where P(t,T) is the solution of the matrix Riccati equation

f(t) = -P(t)P - F'P(t) + P(t)GR-lG'P(t) - R'QH ; P(T) = 0 . (1.13)

The optimal value of the scalar cost functional (1.11) using the optimal control law

(1.12) is given by 

V*(X(to),toT) = 2 (xt(t oT) (1.14)

For all T, the solution P(t,T) exists, is unique, is nonnegative definite symmetric,

and is defined for all t , T.(3)

If P(t,T) is partitioned as

P(t,T) P1 2 (t,T) P1 3 (t,T)

P(t,T) = /P;2 (tT) P2 2 (t,T) P2 3 (t,T)

LP13(t,T) P23(t,T ) P33(t,T)]

the optimal control law (1.12) can be written as

U*(t) = -R-1 G'P(t,T)x(t) - R-'G'[P12 (t,T)ur + P13 (t,T)yd]I

The matrix Riccati equation (1.13) becomes

(1.15)

(1.16)

= -P(t)F - F'P(t) + P(t)GR-1 G'P(t) - H'QH ;

= -(F - GR-'G'P(t))'P12 (t) - P(t)G ; P1 2 (T)

= -(F - GR-'G'P(t))'P1 3 (t) + H'Q ; P1 3 (T) =

= P12 (t)GR-1 G'P1 2 (t) - P12 (t)G - G'P 1 2 (t) ;

= -G'P1 3 (t) + P1 2 (t)GR-1 G'P1 3 (t) ; P2 3 (T) =

= P13(t)GR-1G'P1 3(t) - Q ; P3 3 (T) = 0

P(T) = 0

= 0

0

P2 2(T) = o

0

and the optimal scalar cost (1.14) becomes

V*((to )°t',T) =,toxo:t T) + 2xo[P12(toT)u + P13(to,T)yd] + u'P2 2(toT)u21 11 OT) 0 r yd] r ur1ll~~~~~~~ollP~~~~~~~~~~toT)~~~~~~~~~

+UrP2 3(toT)yd + YdP23 (to,T)ur + YP 3 3 (toT)Yd (1.23)

If we define

b(t) = -P12(t)ur - P13(t)yd (1.24)

c(t) = u'P22(t)ur + u'P23(t)Yd + YdP23(t)ur + YdP33(t)yd (1.25)

equations (1.18-19) can be combined to form

$(t) = -(F - GR-1 G'P(t))'b(t) - (H'QY
d
- P(t)Gur) ; b(T) = 0 (1.26)

and (1.20-22) can be combined to form

c(t) = b'(t)GR-1G'b(t) - YdQyd + b'(t)Gu + u'G'b(t) ; c(T) = 0 . (1.27)
r r

Thus, solution of the matrix Riccati equation (1.13) is equivalent to simultaneous solu-

tion of (1.17), (1.26), and (1.27). Since u*(t) = u*(t) - ur, the optimal control law

for the plant (1.1-2) is given by

u*(t) = -R-'G'P(t,T)x(t) + R-'G'b(t,T) + Ur (1.28)

3

P(t)

P12(t)

P 1 3 (t)

P22(t)

P23(t)

P33(t)

(1.17)

(1.18)

(1.19)

(1.20)

(1.21)

(1.22)



where b(t,T) is the solution of (1.26). The optimal scalar cost using (1.28) is
given by

V*(3(t
o

),tT) = [xo - 2Xob(toT) + c(to,T)] (1.29)
0 0 2 P~(toT _

where c(t,T) is the solution of (1.27). Equation (1.17) is the matrix Riccati equa-
tion for the output regulator problem for the plant (1.1-2).

The optimal control law (1.28) and the resulting optimal scalar cost (1.29) are func-
- tions of the final time T and the arbitrary vector- Ur. The limiting solution as
T + X can be shown to have the following properties:

P = lim P(t,T) = lim P(t,T) (1.30)
TeX t+-*

exists, is constant, and can be found by obtaining the steady-state solution of (1.17).

b = lim b(t,T) = lim b(t,T) (1.31)
T4=C t>-+0

exists, is constant, and can be found by obtaining the steady-state solution of the
linear, first-order differential equation

b(t) = (F - GR-lG'P)'b(t) + (H'QYd - PGu ) ; b(to) = 0 . (1.32)
r

For arbitrary ur, solution of (1.32) yields

b = Px (1.33)
r~~~~~~such that xr satisfies r

P(Fxr + Gur) + H'Q(Hxr - yd) 0 . (1.34)

A bounded optimal scalar cost (1.29) as T * ~ requires that 6(t) = 0 or c(t) = c a
constant, yielding the optimality condition

b'GR-1 G'b - YdQYd + b'GUr + uGb = 0 (1.35)

i.e., if ur satisfies (1.35) where b is obtained from (1.32), then the control law

u*(t) = -R-'G'Px(t) + R-1G'b + ur (1.36)

is optimal, the controlled plant

k(t) = (F - GR-iG'P)x(t) + Gu* (1.37)
C

c~~~~~~~~ua* =R'G'b+ur (1.38)

is asymptotically stable for all t, and the optimal feedforward control law uc* will
drive the output y(t) to Yd. The vectors xr, Ur, and Yd satisfy (1.3-4) where
xr = P-lb, the constant c is given by

c = x'Px (1.39)
r r

and the optimal scalar cost as T + ~ is given by

01 2 i2 (.O
V*(x(to),to,) = 2 [ixollp - 2x'b + c] = IIxo - xrllp (1.40)0 0' 2. P o 2 0 r~lP

The problem now is: given a desired constant output vector Yd, find the corresponding
constant required control vector ur that satisfies (1.35) so that the optimal feed-
forward control law (1.38) can be computed. The problem has been solved by developing
the iterative algorithm given in the following steps.

A. Solve (1.17) for the steady-state value P.
B. Set ur = 0.
C. Solve 1.32) for the steady-state value b.
D. Substitute ur and b into (1.37-38) and solve for the steady-state value x.
E. Substitute x into (1.2) and solve for y.
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F. Compare this value of-y with Yd- If a significant difference exists, compute u#

by substituting x, b, and ur into (1.36), set ur = u*, and return to step C.

The iteration is terminated when step F shows y to be sufficiently close to Yd' The
feedforward control law (1.38) used to achieve this result is considered optimal.

A sufficient condition for convergence of the algorithm is that the magnitude of the
eigenvalues of the matrix I - HrH'Q are less than unity where

r = E'PGR-1G'PE (1.41)
and

Z = -[P(F - GR-lG'P)]-l (1.42)

2. SOLUTION OF THE OBSERVER EQUATION: TF - AT = B

Let r components of the n-dimensional state vector x(t) of the plant represented
by (1.1) be considered unmeasurable, where

1 s r s n-l . (2.1)

Let z(t) be an r-dimensional column vector defined as the output of a filter of the
form

z(t) = Az(t) + Bx(t) + Cu(t) ; z(to ) = z
o

. (2.2)

The matrices A, B, and C are constant, rectangular, and of appropriate dimension.

It has been shown(4) that if a constant, rectangular transformation matrix T can be
found satisfying the matrix equation

TF - AT = B (2.3)

where A and F have no common eigenvalues, then, after a time associated with the
eigenvalues of the matrix A, the state x(t) of the plant (1.1) is related to the

output z(t) of the filter (2.2) by the transformation

z(t) = Tx(t) (2.4)

and, in addition, the matrix C in (2.2) is given by

C = TG . (2.5)

Therefore, if we could determine the matrices T, A, and B that satisfy (2.3), we

could solve (2.4) for an estimate of those states which are considered unmeasurable in
terms of the measurable states and the filter output. We could then construct a state
vector from the measurable states and the estimates of the unmeasurable states which

could be used in the feedback control law for the output regulator.

The observer filter (2.2) cannot use any of the unmeasurable states as input. There-

fore, the columns of the matrix B associated with the unmeasurable states must have

all zero elements. It would also be desirable if the solutions of (2.3) were such that
the eigenvalues of A were large and negative to ensure quick response, and that the

absolute value of the elements of T, B, and C were small enough to be practical.

Since we know nothing about the elements of T, A, and B, except that certain columns

of B must be zero, there are many more unknowns than equations. Certain constraints
are therefore imposed to facilitate the computational task.

Restrict the matrix A to be diagonal. This restriction greatly simplifies the filter

equations for multidimensional filters by eliminating cross-coupling between the ele-

ments of the filter vector. Temporarily assume that all eigenvalues of the matrix A

are equal and denoted by a. Then
A = aI (2.6)

and (2.3) becomes
T[aI - F] + B = 0 . (2.7)
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The equation for the Jth_ element of the filter becomes

z (t) = az (t) + b x(t) + c u(t) (2.8)

where b and c are the Jth rows of B and C, respectively.
a a

The problem therefore has been reduced to that of solving a matrix equation of the
form (2.7) to obtain r simple, uncoupled, first-order filters of the form (2.8).

Assume that the kth element of the state vector x(t) is to be estimated primarily
by zj(t). We would thus like t k (the kth component of tj, which is in turn the
Jth row of T) to take on the value unity, and all other components of tj and all
components of bj and cj to be small in magnitude.

To achieve a unique solution of (2.7), r cost functionals of the following form will
be minimized subject to the constraint of (2.7):

L (tjb ) = 1 [(t -to )(t' - toj) + (b)RO(b] (2.9)
j j, 2 (t i 0 ,~~i~bJ

where Ro is a constant diagonal matrix and to is zero except for the kth compo-
nent which is unity.

A standard LaGrange multiplier minimization yields a solution tj and bi.- To assure
the desired zero columns in B, it will be assumed that the inverse Ro I has zeros at
the appropriate diagonal components; i.e., Ro itself assigns infinite weight to the
columns that must be zero. After the minimization procedure, the rows tj, bj, and cj
are normalized to assure that tjk is unity. The normalized matrices are denoted by
(').

The preceding is implemented with the following algorithm. The algorithm incorporates
the proper choice of the eigenvalues of the matrix A and the construction of all r
filters simultaneously.

A. Given a plant represented by (1.1), select r elements of the state vector which
are to be assumed unmeasurable, where

1 5 r 5 n-l .

B. Set the corresponding elements of the diagonal matrix Ro 1 to zero and the remain-
ing elements to unity.
C. Construct a projection matrix To such that if z(t) were defined as

z(t) = Tox(t) (2.10)

then the elements of the vector z(t) would be the unmeasurable states. (To has one
unity element in each row and zeros otherwise.)
D. Select a positive gain limit such that if the absolute value of any element of the
solution is greater than this gain limit the solution is to be considered impractical.
E. Choose the parameter a to be some small negative value whose magnitude is approxi-
mately equal to the magnitude of the smallest eigenvalue of the matrix F.
F. Construct the matrix

M = [aI - F] (2.11)

G. Carry out the minimization. Construct and solve the following matrix equations:

=A =' [Mt Rlfl[O (2.12)

B' = R-1 A (2.13)0

C = TG (2.14)

A = Ia (2.15)
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which yields the following observer

z(t) = Tx(t) (2.16)

£(t) = Az(t) + Bx(t) + Cu(t) (2.17)

H. Normalize the observer. For each row of To, find the unity element and then select
the corresponding element of the same row of T (i.e., tjk). Multiply this same row of
T, B, and C by the inverse of this element (i.e., l/tjk), yielding the normalized
observer

Zn(t) = Tx(t) (2.18)

zn(t) = Azn(t) + Bx(t) + Cu(t) (2.19)

where zn(t) is used for the normalized variable. The matrices Ti B, and C satisfy

TF - AT = B (2.20)
and

C =TG (2.21)

I. Consider the rows of the matrices A, T. B and C to be solutions. Compare the
absolute value of the elements of each solution with the gain limit. If the absolute
value of each element of a solution is less than or equal to the gain limit, store
that solution. If the absolute value of any element of a solution is greater than the
gain limit, do not store that solution. If the absolute value of at least one element
in all solutions is greater than the gain limit, print the stored solutions and stop.
If not, increment the parameter a to some larger negative value and return to step F.

If the matrix inverse indicated in (2.12) exists, each iteration will produce r
independent solutions as defined in step I of the algorithm.' The iterative procedure
will cause the r solutions with the quickest response time, whose elements do not
exceed the gain limit in magnitude, to be stored. All other solutions are discarded.
The diagonal elements of the resulting stored matrix A are not generally equal.

An illustrative example of the use of the algorithms will now be presented.

3. ILLUSTRATIVE EXAMPLE

The aircraft chosen to illustrate the procedure presented here is the Augmentor
Wing Jet STOL Research Aircraft. For longitudinal flight, in addition to the
usual elevator and throttle, this aircraft has vectored thrust provided by four Pegasus
nozzles that direct the hot gas exhaust from the engines. It also has augmentor blow-
ing ejector flaps through which-the cold airflow from the engines is ducted.

For a 6 0-knot approach on a -7.5° flight-path angle, linearized longitudinal perturba-
tion equations were obtained of the form (1.1-2) where

x'(t) = [v(t) a(t) e(t) q(t)] (3.1)

u(t) = [6E(t) 6 N(t) 6T(t) 6 F(t)] (3.2)

y'(t) = [vK(t) a(t) e(t) y(t)] (3.3)
and

v(t) = variation in the forward component of the airspeed, ft/sec

a(t) = variation in angle of attack, deg

6(t) = variation in pitch attitude, deg

q(t) = variation in pitch rate, deg/sec

6E(t) = variation in elevator angle, deg

6N(t) = variation in nozzle angle, deg

6T(t) = variation in throttle angle, deg

7



. (t) = variation in flap angle, deg

vK(t) = variation in the forward component of the airspeed, knots

y(t) = variation in the flight-path angle, deg

The matrices F, G, and H are

-0.05479 0.2606
[F] = _-0.1453 -0.5078

0'83 0
[0.08273 -0.07091

r 0.004216
[(G = -o.o4573

10
L-. 302

[0.5925

[H] = 0

The matrices

0 0
1.0 0
0 1.0
-1.0 1.0

Q and R- 1 were chosen to be

For computations
zero colimn sine
tion was solved.

0 0o
0 0
1.6
0 10_

al convenience R-1

ce the flap was not us
The control law u(

061009

[R_1G'p] = -0.6807

0.07422

[R-1] = 0
0

10 0 
10 0 0
0 2.5 0 '
0 0 

(3.7)

was taken as a 4 x 4 matrix with a zero row and a
sed for feedback control. The matrix Riccati equa-
(t) = -R-1 G'Px(t) where

-0.2650
-0.03284
-4.392
0

-0.9779
-1.049
4.953
0

-O.6761f
-0.5776

0.3067 1
0 J

(3.8)

gave reasonably good response to initial condition errors and so was taken as an accep-
table basis for the design of optimal feedforward control laws.

A number of optimal feedforward-control laws were computed for various desired steady-
state outputs Yd. The desired output criterion for each case is shown in table 1.

Table 1.- Steady-State Output Design Criteria

Note that, in some cases, some of the elements of the output vector were allowed to
remain free while others were to be driven to a specific value. This was achieved by
starting with the free elements of Yd equal to zero in step B of the algorithm and
by replacing the free elements of Yd with the corresponding elements of y in step
F.

8

-0.5598
0.02461
0

-0.00965

-0.08801
0.9521
1.0
-1.352 -

-0.08378
0
0

-0.08190

(3.4)

-0.01867
-0.5028
0
0.2676

-0.10311
-0.09994
0,
0.2167 J

O_ .
000 
Oj*

(3.5)

0.4 0

[Q] = 0 1.6

0

(3.6)

1 2 3 4 5 .6 7 8 9 10 11

V 0 0 0 0 Free Free'Free Free'lO.OlO0.O lO.O
Id 0 -1.0 F~ree Free 0 -1.0 Free Free 0 Free Free

a
d

1.0 0 Free 1.0 1.0 0 Free 1.0 0 Free Free
6d.1.0 1.0 1.0 Free 1.0 1.0 1.0 Free 0 0 Free



The desired output vector Yd and the required control vector ur were computed for
each case. The resulting-steady-state output and control vector pairs for each case
are shown in tables 2 and 3, respectively. The corresponding optimal feedforward con-
trol law u* for each case is shown in table 4.

c

Table 2.- Desired Steady-State Output Vectors

ase 1 2 3 4 5 6 7 8 9 10 11
Yd
vkd 0 0 0 0 -1.178 -.3120 -.5275 .8907 10.0 10.0 10.0

ad 0 -1.0 -.8095 .9332 0 -1.0 -.7513 .9210 0 -1.103 -.9284

ed 1.0 0 .1905 1.0 1.0 0 .2487 1.0 0 -1.103 -1.144
1d0 1.O 1. 0 . 06676 1.0 1.0 1.0 .07916 0 0 -.2157

Table 3.- Required Steady-State Control Vectors

Case 1 2 3 4 5 6 7 8 9 10 11
ur L _ ._

6Er 0.414 0.461 0.452 -.016 .334 .440 .413 -.071 .680 .732 .635

6 Nr -6.663 -3.303 -3.943 -3.581 -5.497 -2.994 -3.616 -2.740 -9.907 -6.201 -5.351

6Tr .011 .968 .786 -.892 .593 1.122 .991 -.440 -4.941 -3.886 -4.056

6 Fr 0 0 0 0 0 0 0 0 0 0 0

Table 4.- Optimal Feedforward Control Laws

as 1 2 3 4 5 6 7 8 9 10 11

8' -.564 .726 .480 -1.242 -.845 .652 .279 -1.445 2.38 3.80 3.70
EC
6Ac -7.712 -3.270 -4.117 -4.660 -5.191 -2.603 -3.246 -2.796 -21.40 -16.50 -15.61

8Tc -4.964 5.360 5.285 -.038 5.399 5.475 5.456 .357 -3.68 -3.25 -4.39

F* 0 0 0 0 0 0 0 0 0 0 8Fc

For each case, the optimal feedforward commands (table 4) will drive the output y(t)
of the controlled plant (1.37) to the desired steady-state output (table 2) with the
resulting steady-state control deflections (table 3). Transient responses for case 9,
case 2, and case 1 are shown in figures 1, 2, and 3, respectively, where the elevator,
nozzle, and throttle were assumed to have first-order actuator dynamics with time con-
stants of 0.1, 0.0667, and 2.5 seconds, respectively. These figures show that the
steady-state responses are exactly as desired, with quite reasonable dynamics as well.

Let us assume that
construct

v(t) and a(t) are to be considered unmeasurable. Then if we

0 0
0 0
0 1.0
O 0

0 1

0 Ij; To =O.0
0 1.o1.o

(3.9)

and use a gain limit of 10, an observer of the form (2.18-19) is obtained where

9
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[ 1.0 4.853 -0.7202 3.141] (3.10)
1=-0.4044 1.0 0.1679 6.865J

[A] = [1s ° 5 °] (3.11)

= 0 0 0o.830 1.136 (3.12)
L 0.3695 -0.5744(

_- [-4.308 -0.3411 -1.618 0.09264]
[] = -8.986 -0.5284 1.342 1.429 (3.13)

Figure 4 shows the transient response for case 1 using this observer as dynamic compen-
sation, and using only pitch attitude and pitch rate for feedback. The same actuator
dynamics were assumed. Comparison of figure 4 with figure 3 shows an almost identical
response.

4. CONCLUSIONS

Simple algorithms for the construction of optimal feedforward control laws and optimal
observers have been presented. These algorithms can be used to obtain control laws
that behave as stable regulators for theplant in the absence of command inputs, that
will drive the output of the plant to a desired constant value in response to a step
command input, and that require only selected elements of the state vector for feedback.
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