22,447 research outputs found

    Use of remote sensing in agriculture

    Get PDF
    The remote sensing studies of (a) cultivated peanut areas in Southeastern Virginia; (b) studies at the Virginia Truck and Ornamentals Research Station near Painter, Virginia, the Eastern Virginia Research Station near Warsaw, Virginia, the Tidewater Research and Continuing Education Center near Suffolk, Virginia, and the Southern Piedmont Research and Continuing Education Center Blackstone, Virginia; and (c) land use classification studies at Virginia Beach, Virginia are presented. The practical feasibility of using false color infrared imagery to detect and determine the areal extent of peanut disease infestation of Cylindrocladium black rot and Sclerotinia blight is demonstrated. These diseases pose a severe hazard to this major agricultural food commodity. The value of remote sensing technology in terrain analyses and land use classification of diverse land areas is also investigated. Continued refinement of spectral signatures of major agronomic crops and documentation of pertinent environmental variables have provided a data base for the generation of an agricultural-environmental prediction model

    Use of remote sensing in agriculture

    Get PDF
    Remote sensing studies in Virginia and Chesapeake Bay areas to investigate soil and plant conditions via remote sensing technology are reported ant the results given. Remote sensing techniques and interactions are also discussed. Specific studies on the effects of soil moisture and organic matter on energy reflection of extensively occurring Sassafras soils are discussed. Greenhouse and field studies investigating the effects of chlorophyll content of Irish potatoes on infrared reflection are presented. Selected ground truth and environmental monitoring data are shown in summary form. Practical demonstrations of remote sensing technology in agriculture are depicted and future use areas are delineated

    Aircraft digital control design methods

    Get PDF
    Variations in design methods for aircraft digital flight control are evaluated and compared. The methods fall into two categories; those where the design is done in the continuous domain (or s plane) and those where the design is done in the discrete domain (or z plane). Design method fidelity is evaluated by examining closed loop root movement and the frequency response of the discretely controlled continuous aircraft. It was found that all methods provided acceptable performance for sample rates greater than 10 cps except the uncompensated s plane design method which was acceptable above 20 cps. A design procedure based on optimal control methods was proposed that provided the best fidelity at very slow sample rates and required no design iterations for changing sample rates

    Review and appraisal - Cost-benefit analyses of earth resources survey satellite systems

    Get PDF
    Review and assessment of documents concerning cost and benefits of ERS satellites, and value of these studies in directing R and D activitie

    Effects of asymmetry on the dynamic stability of aircraft

    Get PDF
    The oblique wing concept for transonic aircraft was proposed to reduce drag. The dynamic stability of the aircraft was investigated by analytically determining the stability derivatives at angles of skew ranging from 0 and 45 deg and using these stability derivatives in a linear analysis of the coupled aircraft behavior. The stability derivatives were obtained using a lifting line aerodynamic theory and found to give reasonable agreement with derivatives developed in a previous study for the same aircraft. In the dynamic analysis, no instability or large changes occurred in the root locations for skew angles varying from 0 to 45 deg with the exception of roll convergence. The damping in roll, however, decreased by an order of magnitude. Rolling was a prominent feature of all the oscillatory mode shapes at high skew angles

    Level crossing in the three-body problem for strongly interacting fermions in a harmonic trap

    Full text link
    We present a solution of the three-fermion problem in a harmonic potential across a Feshbach resonance. We compare the spectrum with that of the two-body problem and show that it is energetically unfavorable for the three fermions to occupy one lattice site rather than two. We also demonstrate the existence of an energy level crossing in the ground state with a symmetry change of its wave function, suggesting the possibility of a phase transition for the corresponding many-body case.Comment: 5 pages, 6 figures, typos corrected, references adde

    A phenomenological model of the superconducting state of the Bechgaard salts

    Full text link
    We present a group theoretical analysis of the superconducting state of the Bechgaard salts, e.g., (TMTSF)_2PF_6 or (TMTSF)_2ClO_6. We show that there are eight symmetry distinct superconducting states. Of these only the (fully gapped, even frequency, p-wave, triplet) 'polar state' is consistent with the full range of the experiments on the Bechgaard salts. The gap of the polar state is d(k) (psi_uk,0,0), where psi_uk may be any odd parity function that is translationally invariant.Comment: 4 pages, no figure

    Gravitational wave asteroseismology with fast rotating neutron stars

    Full text link
    We investigate damping and growth times of the f-mode for rapidly rotating stars and a variety of different polytropic equations of state in the Cowling approximation. We discuss the differences in the eigenfunctions of co- and counterrotating modes and compute the damping times of the f-mode for several EoS and all rotation rates up to the Kepler-limit. This is the first study of the damping/growth time of this type of oscillations for fast rotating neutron stars in a general relativistic framework. We use these frequencies and damping/growth times to create robust empirical formulae which can be used for gravitational wave asteroseismology. The estimation of the damping/growth time is based on the quadrupole formula and our results agree very well with Newtonian ones in the appropriate limit.Comment: 15 pages, 8 figures, version accepted for publication in PhysRev

    Triple redundant hydrogen sensor with in situ calibration

    Get PDF
    To meet sensing and calibration needs, an in situ calibration technique was developed. It is based on electrolytic generation of a hydrogen/air atmosphere within a hydrogen sensor. The hydrogen is generated from water vapor in the air, and being electrical in nature, the in situ calibration can be performed completely automatically in remote locations. Triply redundant sensor elements are integrated within a single, compact housing, and digital logic provides inter-sensor comparisons to warn of and identify malfunctioning sensor elements. An evaluation of this concept is presented
    • …
    corecore