1,711 research outputs found

    Developing and implementing an integrated delirium prevention system of care:a theory driven, participatory research study

    Get PDF
    Background: Delirium is a common complication for older people in hospital. Evidence suggests that delirium incidence in hospital may be reduced by about a third through a multi-component intervention targeted at known modifiable risk factors. We describe the research design and conceptual framework underpinning it that informed the development of a novel delirium prevention system of care for acute hospital wards. Particular focus of the study was on developing an implementation process aimed at embedding practice change within routine care delivery. Methods: We adopted a participatory action research approach involving staff, volunteers, and patient and carer representatives in three northern NHS Trusts in England. We employed Normalization Process Theory to explore knowledge and ward practices on delirium and delirium prevention. We established a Development Team in each Trust comprising senior and frontline staff from selected wards, and others with a potential role or interest in delirium prevention. Data collection included facilitated workshops, relevant documents/records, qualitative one-to-one interviews and focus groups with multiple stakeholders and observation of ward practices. We used grounded theory strategies in analysing and synthesising data. Results: Awareness of delirium was variable among staff with no attention on delirium prevention at any level; delirium prevention was typically neither understood nor perceived as meaningful. The busy, chaotic and challenging ward life rhythm focused primarily on diagnostics, clinical observations and treatment. Ward practices pertinent to delirium prevention were undertaken inconsistently. Staff welcomed the possibility of volunteers being engaged in delirium prevention work, but existing systems for volunteer support were viewed as a barrier. Our evolving conception of an integrated model of delirium prevention presented major implementation challenges flowing from minimal understanding of delirium prevention and securing engagement of volunteers alongside practice change. The resulting Prevention of Delirium (POD) Programme combines a multi-component delirium prevention and implementation process, incorporating systems and mechanisms to introduce and embed delirium prevention into routine ward practices. Conclusions: Although our substantive interest was in delirium prevention, the conceptual and methodological strategies pursued have implications for implementing and sustaining practice and service improvements more broadly

    A novel role for Lyl1 in primitive erythropoiesis

    Full text link
    © 2018. Published by The Company of Biologists Ltd. Stem cell leukemia (Scl or Tal1) and lymphoblastic leukemia 1 (Lyl1) encode highly related members of the basic helix-loop-helix family of transcription factors that are co-expressed in the erythroid lineage. Previous studies have suggested that Scl is essential for primitive erythropoiesis. However, analysis of single-cell RNA-seq data of early embryos showed that primitive erythroid cells express both Scl and Lyl1. Therefore, to determine whether Lyl1 can function in primitive erythropoiesis, we crossed conditional Scl knockout mice with mice expressing a Cre recombinase under the control of the Epo receptor, active in erythroid progenitors. Embryos with 20% expression of Scl from E9.5 survived to adulthood. However, mice with reduced expression of Scl and absence of Lyl1 (double knockout; DKO) died at E10.5 because of progressive loss of erythropoiesis. Gene expression profiling of DKO yolk sacs revealed loss of Gata1 and many of the known target genes of the SCL-GATA1 complex. ChIP-seq analyses in a human erythroleukemia cell line showed that LYL1 exclusively bound a small subset of SCL targets including GATA1. Together, these data show for the first time that Lyl1 can maintain primitive erythropoiesis

    The highly competitive ascidian Didemnum sp. threatens coral reef communities in the Wakatobi Marine National Park, Southeast Sulawesi, Indonesia

    Get PDF
    Coral reefs in the Wakatobi Marine National Park (WMNP), Indonesia, are protected but have been degrading in several areas due to local anthropogenic stressors. In affected areas, benthic surveys revealed the occurrence of a dominant ascidian species of the genus Didemnum, which may negatively impact the benthic community composition and structure. We quantified the abundance, substrate preference, and growth rate of Didemnum sp. in non-degraded and degraded reefs to assess its impact on the benthic community. While Didemnum sp. occurred in similar high abundances in both, non-degraded (0.66%) and degraded (0.75 %) reef sites, this species showed a substantially (>10-fold) increased growth rate in degrading reefs (2.7 ± 0.98% day−1 increase in colony size, compared to 0.17 ± 0.39 % day −1 in non-degraded reefs). Furthermore, Didemnum sp. colonized many different substrates and showed the ability to overgrow live corals quickly. These observations indicate that Didemnum sp. can be a severe threat to a reef community by outcompeting live corals and call for further studies on the interaction between environmental pollution and Didemnum growth patterns in coral reefs

    Defining the phenotypes of sickle cell disease.

    Get PDF
    The sickle cell gene is pleiotropic in nature. Although it is a single gene mutation, it has multiple phenotypic expressions that constitute the complications of sickle cell disease. The frequency and severity of these complications vary considerably both latitudinally in patients and longitudinally in the same patient over time. Thus, complications that occur in childhood may disappear, persist or get worse with age. Dactylitis and stroke, for example, occur mostly in childhood, whereas leg ulcers and renal failure typically occur in adults. It is essential that the phenotypic manifestations of sickle cell disease be defined accurately so that communication among providers and researchers facilitates the implementation of appropriate and cost-effective diagnostic and therapeutic modalities. The aim of this review is to define the complications that are specific to sickle cell disease based on available evidence in the literature and the experience of hematologists in this field

    Developing cardiac and skeletal muscle share fast-skeletal myosin heavy chain and cardiac troponin-I expression

    Get PDF
    Skeletal muscle derived stem cells (MDSCs) transplanted into injured myocardium can differentiate into fast skeletal muscle specific myosin heavy chain (sk-fMHC) and cardiac specific troponin-I (cTn-I) positive cells sustaining recipient myocardial function. We have recently found that MDSCs differentiate into a cardiomyocyte phenotype within a three-dimensional gel bioreactor. It is generally accepted that terminally differentiated myocardium or skeletal muscle only express cTn-I or sk-fMHC, respectively. Studies have shown the presence of non-cardiac muscle proteins in the developing myocardium or cardiac proteins in pathological skeletal muscle. In the current study, we tested the hypothesis that normal developing myocardium and skeletal muscle transiently share both sk-fMHC and cTn-I proteins. Immunohistochemistry, western blot, and RT-PCR analyses were carried out in embryonic day 13 (ED13) and 20 (ED20), neonatal day 0 (ND0) and 4 (ND4), postnatal day 10 (PND10), and 8 week-old adult female Lewis rat ventricular myocardium and gastrocnemius muscle. Confocal laser microscopy revealed that sk-fMHC was expressed as a typical striated muscle pattern within ED13 ventricular myocardium, and the striated sk-fMHC expression was lost by ND4 and became negative in adult myocardium. cTn-I was not expressed as a typical striated muscle pattern throughout the myocardium until PND10. Western blot and RT-PCR analyses revealed that gene and protein expression patterns of cardiac and skeletal muscle transcription factors and sk-fMHC within ventricular myocardium and skeletal muscle were similar at ED20, and the expression patterns became cardiac or skeletal muscle specific during postnatal development. These findings provide new insight into cardiac muscle development and highlight previously unknown common developmental features of cardiac and skeletal muscle. © 2012 Clause et al

    Isolation of a wide range of minerals from a thermally treated plant: Equisetum arvense, a Mare’s tale

    Get PDF
    Silica is the second most abundant biomineral being exceeded in nature only by biogenic CaCO3. Many land plants (such as rice, cereals, cucumber, etc.) deposit silica in significant amounts to reinforce their tissues and as a systematic response to pathogen attack. One of the most ancient species of living vascular plants, Equisetum arvense is also able to take up and accumulate silica in all parts of the plant. Numerous methods have been developed for elimination of the organic material and/or metal ions present in plant material to isolate biogenic silica. However, depending on the chemical and/or physical treatment applied to branch or stem from Equisetum arvense; other mineral forms such glass-type materials (i.e. CaSiO3), salts (i.e. KCl) or luminescent materials can also be isolated from the plant material. In the current contribution, we show the chemical and/or thermal routes that lead to the formation of a number of different mineral types in addition to biogenic silica

    Thermochromic VO2−SiO2 nanocomposite smart window coatings with narrow phase transition hysteresis and transition gradient width

    Get PDF
    Thermochromic vanadium dioxide (VO2) window coatings hold the promise of reducing the energy consumption of the built environment by passively regulating solar heat gain in response to changing conditions. Composite materials with embedded VO2 particles have shown greatly improved optical performances compared with thin films, however they typically exhibit broadened phase transition hysteresis and gradient widths, which negatively impacts the overall performance. Here, we present a scalable one-step solution based synthesis for a thermochromic smart window coating based on a vanadium dioxide sol-gel containing silica (SiO2 nanoparticles. We compare the performance of our nanoparticle composite with thin film VO2 along with composites formed by mixing VO2 and SiO2 sol-gels and find that both composites achieve an acceptable visible transmittance ( 50%) along with a comparable and competitive solar modulation (12.5% and 16.8% respectively), roughly double that of the plain VO2 film (6.7%). However, our SiO2 nanoparticle containing composite also benefits from a narrow transition hysteresis and gradient width (9.4 ∘C and 2.9 ∘C respectively). We predict that this method may subsequently be combined with metal ion doping to control both the optical and phase transition characteristics to achieve composite films with high overall energy saving performances

    Genomic-Bioinformatic Analysis of Transcripts Enriched in the Third-Stage Larva of the Parasitic Nematode Ascaris suum

    Get PDF
    Differential transcription in Ascaris suum was investigated using a genomic-bioinformatic approach. A cDNA archive enriched for molecules in the infective third-stage larva (L3) of A. suum was constructed by suppressive-subtractive hybridization (SSH), and a subset of cDNAs from 3075 clones subjected to microarray analysis using cDNA probes derived from RNA from different developmental stages of A. suum. The cDNAs (n = 498) shown by microarray analysis to be enriched in the L3 were sequenced and subjected to bioinformatic analyses using a semi-automated pipeline (ESTExplorer). Using gene ontology (GO), 235 of these molecules were assigned to ‘biological process’ (n = 68), ‘cellular component’ (n = 50), or ‘molecular function’ (n = 117). Of the 91 clusters assembled, 56 molecules (61.5%) had homologues/orthologues in the free-living nematodes Caenorhabditis elegans and C. briggsae and/or other organisms, whereas 35 (38.5%) had no significant similarity to any sequences available in current gene databases. Transcripts encoding protein kinases, protein phosphatases (and their precursors), and enolases were abundantly represented in the L3 of A. suum, as were molecules involved in cellular processes, such as ubiquitination and proteasome function, gene transcription, protein–protein interactions, and function. In silico analyses inferred the C. elegans orthologues/homologues (n = 50) to be involved in apoptosis and insulin signaling (2%), ATP synthesis (2%), carbon metabolism (6%), fatty acid biosynthesis (2%), gap junction (2%), glucose metabolism (6%), or porphyrin metabolism (2%), although 34 (68%) of them could not be mapped to a specific metabolic pathway. Small numbers of these 50 molecules were predicted to be secreted (10%), anchored (2%), and/or transmembrane (12%) proteins. Functionally, 17 (34%) of them were predicted to be associated with (non-wild-type) RNAi phenotypes in C. elegans, the majority being embryonic lethality (Emb) (13 types; 58.8%), larval arrest (Lva) (23.5%) and larval lethality (Lvl) (47%). A genetic interaction network was predicted for these 17 C. elegans orthologues, revealing highly significant interactions for nine molecules associated with embryonic and larval development (66.9%), information storage and processing (5.1%), cellular processing and signaling (15.2%), metabolism (6.1%), and unknown function (6.7%). The potential roles of these molecules in development are discussed in relation to the known roles of their homologues/orthologues in C. elegans and some other nematodes. The results of the present study provide a basis for future functional genomic studies to elucidate molecular aspects governing larval developmental processes in A. suum and/or the transition to parasitism
    • …
    corecore