27,697 research outputs found
An LFT/SDP approach to the uncertainty analysis for state
A state estimator is an algorithm that computes the current state of a time-varying system from on-line measurements. Physical quantities such as measurements and parameters are characterised by uncertainty. Understanding how uncertainty affects the accuracy of state estimates is therefore a pre-requisite to the application of such techniques to real systems. In this paper we develop a method of uncertainty analysis based on linear fractional transformations (LFT) and obtain ellipsoid-of-confidence bounds by recasting the LFT problem into a semidefinite programming problem (SDP). The ideas are illustrated by applying them to a simple water distribution network
Derivation of near-optimal pump schedules for water distribution by simulated annealing
The scheduling of pumps for clean water distribution is a partially discrete non-linear problem with many variables. The scheduling method described in this paper typically produces costs within 1% of a linear program-based solution, and can incorporate realistic non-linear costs that may be hard to incorporate in linear programming formulations. These costs include pump switching and maximum demand charges. A simplified model is derived from a standard hydraulic simulator. An initial schedule is produced by a descent method. Two-stage simulated annealing then produces solutions in a few minutes. Iterative recalibration ensures that the solution agrees closely with the results from a full hydraulic simulation
Analysis of the F-corona according to the Mie theory. Part I - Mathematical formulation and uniqueness of the derived theoretical models
Mathematical model for removing integrals over scattering angle and particle size in analyzing observations of zodiacal ligh
Analysis of the F-corona according to the Mie theory. Mathematical formulation and uniqueness of the derived theoretical models
Mathematical model formulation to remove integrals over scattering angle and particle size occuring in zodiacal light observation analysi
Calibration and comparison of chlorine decay models for a test water distribution system
This paper investigates the kinetics of monochloramine as disinfectant in a 1.3 km water pipe. A novel procedure for the correction of chlorine meter errors is introduced and applied. Parameter estimation using nonlinear optimisation procedures is used to identify decay coefficients for monochloramine models with a single coefficient or two coefficients as used in EPANET. Important difficulties in fitting these parameters which come about because of the model structure are highlighted. Finally, results of
decay coefficients are presented and investigated for flow, inlet chlorine concentration and temperature dependence
Angular scattering from irregularly shaped particles with application to astronomy
Angular scattering from irregularly shaped particles with application to astronom
Gradient-based quantitative image reconstruction in ultrasound-modulated optical tomography: first harmonic measurement type in a linearised diffusion formulation
Ultrasound-modulated optical tomography is an emerging biomedical imaging
modality which uses the spatially localised acoustically-driven modulation of
coherent light as a probe of the structure and optical properties of biological
tissues. In this work we begin by providing an overview of forward modelling
methods, before deriving a linearised diffusion-style model which calculates
the first-harmonic modulated flux measured on the boundary of a given domain.
We derive and examine the correlation measurement density functions of the
model which describe the sensitivity of the modality to perturbations in the
optical parameters of interest. Finally, we employ said functions in the
development of an adjoint-assisted gradient based image reconstruction method,
which ameliorates the computational burden and memory requirements of a
traditional Newton-based optimisation approach. We validate our work by
performing reconstructions of optical absorption and scattering in two- and
three-dimensions using simulated measurements with 1% proportional Gaussian
noise, and demonstrate the successful recovery of the parameters to within
+/-5% of their true values when the resolution of the ultrasound raster probing
the domain is sufficient to delineate perturbing inclusions.Comment: 12 pages, 6 figure
Thermocouple installation
A thermocouple assembly which includes a plug having a pair of small diameter holes near one end thereof which are spaced a small distance apart to leave a thin quantity of plug material between the holes is presented. There are a pair of thermocouple wires extending through the different holes and with the outer ends of the wires joined to the thin quantity of plug material which lies between the holes to form a thermocouple junction
Feasibility and benefits of laminar flow control on supersonic cruise airplanes
An evaluation was made of the applicability and benefits of laminar flow control (LFC) technology to supersonic cruise airplanes. Ancillary objectives were to identify the technical issues critical to supersonic LFC application, and to determine how those issues can be addressed through flight and wind-tunnel testing. Vehicle types studied include a Mach 2.2 supersonic transport configuration, a Mach 4.0 transport, and two Mach 2-class fighter concepts. Laminar flow control methodologies developed for subsonic and transonic wing laminarization were extended and applied. No intractible aerodynamic problems were found in applying LFC to airplanes of the Mach 2 class, even ones of large size. Improvements of 12 to 17 percent in lift-drag ratios were found. Several key technical issues, such as contamination avoidance and excresence criteria were identified. Recommendations are made for their resolution. A need for an inverse supersonic wing design methodology is indicated
- …