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ABSTRACT

A mathematical model is formulated to remove the integrals over
scattering angle and particle size which occur in analyzing observations
of the zodiacal light. The resulting algebraic equations are expressed
in terms of scattering functions with known and easily recognizable prop-
ertles, Consequently, the uniqueness of deductions concerning the nature
of the interplanetary dust can be determined by studying the mathematical
behavior of these functions. In addition, the simplified mathematical
formulation allows one to judge the relative value of various observations.
Single color observations at elongations in the range 20°<e<70° give unique
information concerning the size distribution of the interplanetary dust
but not the chemical composition or electron density. Multi-color obser=-
vations in this range help in determining the electron density but not the
chemical composition. Multi-color observations in the range 110°<¢<180°
are most valuable in determining the electron density and chemical compo-
sition,

It is shown that the radial decay constant, o, must be less than 1.5,



1. INTRODUCTION

From observations of the brightness and polarization of the zodiacal
light as a function of the elongation, &, it is possible, in principle, to
deduce the composition, number density and size of interplanetary parti-
cles. Many observations are available, Weinburg (196l;) presents an excel-
lent summary, for example., By averaging the measured brightness curves
(brightness vs elongation) in the region €<90°, one finds a reasonable
correlation among results obtained by different observers. However, there
is little agreement among these same observers regarding the measured
polarization. In addition to observational inconsistencies, the determi-
nation of the nature of the zodiacal light is further hampered by analytic
difficulties. The mathematical relationships, as derived by Gustov Mie
(1908), between the composition and size distribution of the particles on
the one hand and the observed polarization and brightness on the other,
are very complicated. Various approximations have been applied, but inso-
far as we know, no one has succeeded in matching the observed polarization
curves with exact theoretical curves corresponding to real particles.
Since all of the observed polarization curves are different, it would be
remarkable if none could be satisfactorily explained by the application
of the Mie theory.,

The lack of an exact match between the observed polarization and that
calculated theoretically from hypothetical models of the interplanetary
medium would indicate that many of the observations are wrong, or that the
zodiacal light is a more complicated phenomenon than we previously supposed.™
It is important to determine which of these alternatives is probable,

Weinberg feels very confident that his observations are accurate,**
This confidence is justified when one considers the possibilities for
error in the other observations due to wide bandwidth and questionable
corrections for the various night sky radiations. His polarization measure-
ments agree somewhat with those of Divari and Krvlova (1963), Huruhata
(196l), Robley (1962) and Peterson (196l) in the sense that polarization
is less than 0,23 for € = 709, On the other hand the observations of
Blackwell and Ingham (1961) show very high polarization (P=0,33 at 700°)
and agree rather well with those of Elsasser (1963).

* For example, Giese and Siedentopf (1962) suggest that the particles
may be irregularly shaped and aligned. In that case the Mie Scattering
theory, which is only applicable to spherical particles, is not appro-
priate for analysis of the zodiacal light.

) Personal communication.



Thus, the polarization observations can be roughly divided into
two groups; one group represented by the measurements of Weinberg, the
other represented by the measurements of Blackwell and Ingham. We
assume that either or both are correct.

If neither can be matched by an exact theoretical analysis according
to the Mie theory, then the assumption that the zodiacal light results
from nearly spherical and unaligned particles is probablywong. On the
other hand, if both can be matched from the Mie theory we must conclude
that either: (1) both are accurate and correct indicating that the inter-
planetary medium changes with time, or (2) the scattering theory can be
made to fit nearly any polarization curve,

It was this last possibility which prompted the present study. No
information was available regarding the uniqueness of deductions from the
Mie theory when the particles are polydisperse.

The possibility that only one observational curve can be theoreti-
cally matched would indicate that observations in the other group are
grossly in error., In that case, the size distribution, radial distri-
bution and composition of the particles in the interplanetary medium could
be determined from the theoretical model used to matched the correct curve.
Such a determination would be useful only if the theoretically derived
model was unique., Thus, before any further work is done in trying to
explain the zodiacal light, it is important to investigate the uniqueness
of the mathematical relationships between the measured optical parameters
and the parameters representing the physical properties of the particles,
These relationships are complicated by the observational geocmetry of the
problem and by the heterogeneous and polydisperse nature of the scatterers,
In order to understand the optical cmtributions from each component in
the interplanetary medium, it is necessary to simplify the mathematical
formulation so that the measured variables may be expressed in terms of
functions with easily recognizable behavior,

In the following volume we present such a mathematical formulation
preparatory to a detailed analysis of all observations, and summarize the
ambiguities which occur in trying to match the observations with theoret-

ical modelse.



2.,  MATHEMATICAL FORMULATION

2.1 Exact Formulation of the Zodiacal_Light Problem

According to the Mie theory, there is an exact function, i.(e, m, x),
which relates the optical character of light scattered by a sinéle spherical
particle to its physical properties. The irradiance, I., of the light
scattered by N particles per cm”? with radius, a, is givén by:

2
I\
I, (8, 7) = —S— N(x, p) i, (8, m, x)dv ax (1)
J 8n R J

where )\ is the wavelength, I, is the spectral irradiance of the illumination
at the scattering site distance p from the sun, (figure 1), R is the distance
from the scattering site to the observer, ® is the scattering angle, m is
the refractive index of the particle, and x is the size parameter defined

by:
x = 2na/n. (2)

The small volume, dv, is defined by the intersection of the illuminating
beam with the field of view and the subscript, j, indicates the orientation
of the electric vector with respect to the scattering plane. The sum of
the vertically polarized light (j=1) and the horizontally polarized light
(j=2) is indicated by neglecting the subscript, i.e.,

I = 1 +1, i=4,+1, (3)
The irradiance can be expressed interms of the flux of solar radiation,
J(\); at R_=1 A.U.
o o
R02
I = 900 % (1)
P
The size distribution function can be expressed in terms of the size dis-
tribution at distance p = RO from the sun:

a

(5)

R
N(x,p0) = N(x,Ro)(—pE’-

where we have assumed that the number density decreases as p-a. The
scattered irradiance is seen coming from a solid angle n tan ¢ where o






is the half angle of the view field. The apparent brightness is therefore:
aB, (8, ) = 4T, (8, W/n tan?q . (6)

The volume increment may be expressed in terms of the scattering angle 6
and elongation, e:

v = R sing R2' tan.ch d9/sin29 (7

substituting equations (k) through (7) into equation (1) and integrating
over all scattering angles and particle sizes we obtains

Jo(k)Ro 12 . a
Bj(e, A) = —T =7 N(x, Ro) sin 9 ij(e, m, x) dx d® (8)

sin e 8n

Equation (8) is exact if the implicit assumptions are reasonable. These
assumptions are: 1) the interplanetary dust particles scatter like spheres,
2) the decrease (or increase) in number density with radial distance from
the sun is independent of particle size and 3) scattering from electrons

is negligible. The latter assumption is certainly not valid for e< 20°.

2.2 The Cumulative Functions F(8, m, X) and A(6, m, X)

Consider a uniform distribution of particles containing N(X, R,)
particles per cc per increment 6x in the range O < x < X. X may be called
the termination parameter in the sense that it terminates the unit step
function which represents a uniform distribution containing one particle
per cc per increment 8x. '

2n A
X = = (9)

where A is the radius of the largest particle in the uniform distribution.
The scattering from the terminated unit step distribution of particles

is given by:

X
Fj(e: m, X) = / ij(e: m, x) dx (10)
o)

Thus defining the cumulative scattering ratio,* F.(8, my X). F(6, my X)
is presented graphically in figures 2 and 3. J

* The cumulative scattering ratio was first defined by Donn and Powell

(1963).
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Figure 2A. F(€, m, X) Refractive Index m=1.4 (typical)
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Typical Mathematical Behavior of the Cumulative Brightness

LOG TERMINATION PARAMETER (LOG X)

Function, F(X), for Various Values of the Scattering Angle, 8 =€,

and Refractive Index, m. (taken from Powell and Donn, 1966)
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An arbitrary, continuous size distribution of particles, N(x), can
always be expanded as a sum of terminated unit step functions with appropriate
coefficients, N(X). i.e.:

Nx) = ) WX ) UX) )

n

Some of the coefficients, N(Xg), may be negative, indicating a lack of
particles in the range defined by X.,. However, the sum of the negative
coefficients, KKXS), must be less than the sum of the positive coefficients,
v~ Sera M Iharm A~ a3 1 - diAan ha

Y T + 1m AV Mo a mne
l\l\ An - AS /7 3 MOLUaAUusT o Llcsa LLVO LIWINVGL W, i ally 4 Uslull Lo MV

physical meaning.

The scattering from the real size distribution of particles can now
be simplified. First, notice that the measured brightness can be expanded
as a sum of cumulative scattering functions:

/5 108, my 0 x> Y Wx) F(e, m D (12)

©
n

Substitute equation (12) into equation (8). Obtain:

I R, 32 o _ 1
Bj(g, ) = 'T'QITcT_’Z ZN(R ,» X)) f sin © Fj(e,m, Xn) de (13)
n €

Before simplifying equation (13) further in the next section, let
us define the cumulative polarization function, p(6, m, X ). The polariza-
tion due to the unit step distribution function is:

F.(8, m, X) - F (0, m, X)
p(e, m, X) = F(e, m, X) (111)

as shown in figure L. The measured polarization, P,y due to all terminated
step functions required to characterize an arbitrary continuous distribution,
is given by:

z WX, Ro)} sin“9 (0, m, X )
P (e, 1) = L i (15)

z M, Ro)jsinae F(8, m, X ) d8

n

14
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where:

p(6, m, Xn) F(8, m, Xh) (16)

as shown in figure 5. The denominator of equation 15 is related to the
measured brightness by equation (12). Thus:

mm JoRo 2

.. lra 2 - n
B P (s1n e) Bn” _ 2: NKXn: Ro) Jf sin% A(8, m, Xn) ds (17)
A €

n

2.3 Simplification of Equations (12) and (17)

Let us define two functions of the measured brightness and polarization:

M(a, €, \) = B (e, M) sin l+a, (18)

ands

W(Cf-, €, )\) = Pm(G: A) M(G., €, \) (19)

From equations (12) and (17) we obtains

M(a, e, A) = K(A) Zﬁ(Ro, 'Xn) j: sin® F(8, m, X ) de (20)
n
W(a, e, A) = K(O) ZN(RO, xn) fn sin® @ a(e, m, Xn) de (21)
[
n
wheres
2,, 2
K(A) = g R, A /Bn (22)
Let:s
n a
f sin®8 F(8) 46 = q(n) - ale) (23)
£

18



Figure 5A.

o D.4858X104AL, 1.5, 0.6)
O 0.2260X103a(s, 1.5, 1.0)
O 0.3304X162 4, 1.5, 1.6)

1 1 1

40 50 60 70
ELONGATION + (DEGREES)

® 0.2557X1058(:, 1.4, 0.6)
©0.7294X 18 ac, 1.8, 1.0)
030.9766 X 1020, 1.8, 1.4)
A 0.4866X102 a0, 1.8, 1.8)

1 1 1

30

40 50 60 70
ELONGATION « (DEGREES)

. 0.86%10%80, 1.4, 06)

O 0.2636X104a(,, 1.4,1.0)
O 0.2066X 182 4, 1.4, 1.5)
A 0.4869X102a(e, 1.4, 2.0

Type 1 Functions, A (€, m, X), Characterized by Positive Value

and Positive Slope

0 50 () 70
ELONGATION « (DEGREES)

19



10

=]

e 4.8834(s, 1.51,1.8)
O 3.1474(s, 1.51, 2.2)
E 2.7994(e, 1.51, 2.6}

2.8314(q, 1,51, 3.0)

/ . |

30 40 50 60 70
o] ELONGATION « (DEGREES)

o 0.2272X102a0, 1.4, 2.2)
O 0.1700X 102 a(s, 1.4, 2.5)

L]
(o]
- a
A
-

0 1046, 14,29
A 6.254(, 1.4,3.2)

16
14
46.51 (¢, 1.8, 1.8)
24.69A(c, 1.8, 2.0) 12
16.66 als, 1.8, 2.2)
2440, 1.8, 2.4)
10
8
6
1 1 1 [ 4
30 40 50 60 70
ELONGATION + (DEGREES) 2

30 ) 50 ) L
ELONGATION . (DEGREES)

Figure 5B. Type 2 Functions, A (€, m, X), Characterized by Positive Value

20

With Zero Slope Between 35° and 55°



A0

38

34

34

2

30

28

2

24

22

8~ o 077524l 1.5, 5
O 09376 x 10 1A, 1.51, 10.2)
6L O 0.5203X 101, 1.51, 15.0)
D

0 [ | | L
30 40 50 &0 70

ELONGATION « (DEGREES)

Figure 5C. Type 3 Functions, A (€, m, X), Characterized by Positive Value

With a Negative Slope

20

18-

o 18.18a(:,1.8,23)

| 1.

40 50 40
ELONGATION « (DEGREES)

Q4.1524(, 1.4,3.7)

® 5.4794a(, 1.4, 3.4)

490 50 60
ELONGATION « (DEGREES)

70

21



1 1 b,
30 40 ) 60 70

ELONGATION « (DEGREES)

® 4.152a(c,1.4,3.
8L © 3.635a(c, 1.4, 4.0)
3 3.1584(c, 1.4, 4.2)
A 2927 alc, 14, 4.4)
10 1 1 1 1
30 40 50 60 70

ELONGATION « (DEGREES)

Figure 5D. Type 4 Functions, A (€, m, X), Characterized by Negative Slope
and Both Positive and Negative Value

22



14 -
-6 PO | 1 ] 1 1
30 40 50 &0 70
ELONGATION + (PEGREES}
2 _

2 . L 1 L 1

30 40 50 60 70
ELONGATION « (DEGREES)

2.657 als,
2.450 Afe,

poOoOe®
[ng>
o
8
-3

30 40 ’ 50 50 70
ELONGATION « (DEGREES)

121240, 14,
1.0534(:, 1.4,
1.053 (s, 1.4,
1395407 14,
230946, 1.4

Xpooe
wanan
RIS

/

e 1
50. 60 70
ELONGATION « (DEGREES}

Figure 5E. Type 5 Functions, A (€, m, X), Characterized by Negative
Values and Zero Slope Between 35° and 65°

23



24

Als, 1.4, 5.5)
ale, 1.4, 6.0)
0.2642 A(s, 1.4,7.0)
0.1562 (s, 1.4, 8.0)
0.24(c, 1.4, 10)

0O 1044000
O 1024(22)

o 1034(58)

A 102432

30 40 S0 60 70

Figure 5F. Type 6 Functions, A (€, m, X), Characterized by Oscillatory

Shape and Positive and Negative Values




and:
- .
f sin 0 A(8) @@ = Q(n) - Qe)
£

Now, differentiate equations (20) and (21) with respect to e, realizing
that:

3q(n) _ 23Qln)

d¢e dc =0
we obtain:
oM 3q
¥ -K()‘)szo’ xn) d¢e

n

L -K(X)Z‘ﬁ’(Ro, X)) g—g
n

buts
.. a
SRS
B_Q. = Sinae A(e)

S50

M - _x()) sin%Z'N(RO, X ) Fley my X )

n

e - -K(2) sinanﬁ(Ro, Xn) AMe, m, Xn)
n

From equations (18) and (19) we also obtain:

M oB l+a a
= = 15? sin™ e + (1+a) B, sin ¢ cose

o¢ e m

(2L)

(25)

(26)

(27)

ar 9B
1 R
W o __._am B sin~t%g 4+ Pm{_gm sint*% ¢ 4 (1+a) B, sin e cos% (28)
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We define two new functions of the measured brightness and polarization:

-1
S(es %, @) = i (29)
s1n ¢
-1
- X
(e, 2y ) = =30 (30)
sin e ’

Combining equations (25) through (30) we obtain:

S(es M, X, m) = -) WR, %) Fe, m, X)) (31)
n

e, N, X, m) = -ZK(RO, X ) &(e, m, X ) (32)
n

where S and T are obtained from the measured brightness, B , and polariza-
tion, P, for various assumed values of a and known A as follows:

(eshs @) = =& (e + ZmM
s,{esXsa 6] (1+a) cose B e, * =3, sine (33)

AP B
! . n n
Tm(s, Ay, @) = 68 {Bm sing —— + (L+a) Pmcos _e:|+ Pma—e sin s} (3L)

Equations (31) through (3L) represent the fundamental mathematical
relationships between optically measureable quantities and the physical
properties of the interplanetary dust. The measured functions Sm(e) and
Tn(e) can be obtained directly from the observed curves and plotted for
various assumed values of a. The resulting curves are smooth and continuous
for > 20° as shown, for example, in figures 6 and 7 taken from the observa-
tions of Blackwell and Ingham.
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3. ANALYTIC METHOD

The "measured" curves S (e) and Tp(e) obtained by combining B_, 3B /3¢,
P_ and ?P_/de according to e%uations 33 and 3L, must be matched byma sum of
theoretical curves, F(e,m,¥,) and A(e,m,Xn), as in equations 31 and 32 with
appropriate coefficients, ﬁ(Ro,Xn),in order to determine the unknowns m,X,
and N(Ry,Xn). This is accomplished as follows:

First, note the unique characteristics of the measured curves Sm and Tm'

They can be characterized by their magnitude, sign, slope and the elongations
at which peaks and valleys occur for various assumed values of a.

Second, investigate the behavior of the curves F(e) or A(e) for various
values of m and Xpn. F(e) may be characterized by its slope in two regions,
O< €< 70° and 110°<e<180°, and the elongation angle at which F(e) is a mini-
mum, 70°<e<110°, For example, F(e) for O<e<70° is presented graphically for
various representative values of X, and m in figure 2. The function i(e,m,X,)
is grouped into six different classification depending on whether the function
is in general positive or negative, and/or whether it exhibits positive or
negative slope. A(e) is shown graphically for representative values of m and
X, in figures 5A - 5F for O<e<70°., The A series corresponds to group 1l types,
the B series to group 2 types, etc. In general as we go from group one to
group six, X, increases for all values of m, Almost any combination of posi-
tive and negative values with a positive or negative slope is available,
A(e) may be either positive or negative when the refractive index, m, is
real (non-absorbing particles). On the other hand if m has an imaginary
component (absorbing particles), A(e) is positive for all values of X and e.*

Third, choose various values of m and for which the corresponding
curves F(e) and A(e) show characteristics similar to the measured curves
Sp(e) and $m(e). For example, if the curve S,(e) shows a steep negative
slope, choose a curve F(e) for X >5; if T (e) is negative over a given
range in e, choose m real and X, such that A(e) is also negative in that
range. Choose as many different F(e,m,X,) or A(e,m,X,) as there are
measured points in the curves S, or T;. Choose at least one X in each of
the six A(e) catagories.

Fourth, substitute the chosen function F(e) and A(e) into equations
31 and 32 thereby obtaining as many equations as there are measured points
on the curves Sy(e,a) and T, (e,o). The resulting matrix equations can be
programed directly from the graphs in figures 2 and 5.

# A preliminary investigation by Donn and Powell (unpublished) indicates
that A(e,Xn) is positive for all e and X, even when the absorption
coefficient is only 1/l of the real part.
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Fifth, solve the matrix equations for N(Ro,Xn). Negative values of
N(Ry, Xp) will probably appear in the first solution., These are only
permissible 1f the magnitude of the negative coefficient, say ﬁ(Ro,Xs),
is less than the sum of the positive coefficients, ﬁ(Ro,Xp>Xs).

Sixth, find a set of curves, 8(e,m,Xn), which, when summed with proper
coefficients, match the product, N(e,Xg)a(e,Xg), corresponding to nonper-
missible negative coefficients N(€,Xg). Most functions A(e,m,Xn) can be
expanded in terms of a sum of other A functions with different termination

parameters, X, or different refractive indices, me A four-term expansion
is usually sufficient, so that the computer is not required for this step.

3.1 Limiting Values of a.

The cumulative scattering ratios, F(e,m,X), all have negative slopes
in the region 6<e< 90°, Also, they are positive for all values of ¢, m
and X, This fact, when correlated with slope of the measured function,
Sms irmediately places an upper limit on the value for &, As can be seen
from equation 5, a given value for a corresponds to a given increase (a<0)
or decrease (@>0) in the particle number density as the particle orbital
radius increases, According to equations 31 and 33:

K ), Mg ¥, )< flatyoose - b 2] (35)

where b is the log-log slope of the measured brightness curve, By(e), in
the range 209<g< 70°, i.e, '

B =B e-'b
m o

The summation on the left side of equation (35) is always positive, so:

b 51252 (a+1) cos ¢ (36)

for 20%<e<70°,
Finally:
a<b-1l (37)
From Blackwell and Ingham's data, b=2,48. Equation 37 becomes:
a<l.L8
Weinberg' s measured brightness gives nearly the same result. The values

of a estimated by Giese and Siedentopf (1962) for dielectric particles are
clearly too high. Their derived mixtures contain dielectric particles

with a=3 and a=3,5.
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h. UNIQUENESS

The brightness and polarization of the light scattered by an ensemble
containing monodisperse, spherical particles can only be expressed as a
slowly converging series. Each term is a3 complicated function of the
particle size parameter, refractive index and scattering angle. Physically,
the nth term represents the radiative effect of a 2nth order electric or
magnetic multipole stimulated in the particle by the incident fields. The
interference between radiation from multipoles of different order produces
resonance for some combinations of the variables x, 6, m, and dissonance
for others. Consequently the apparent brightness and polarization is an
erratically oscillating function of these variables. When the particles
are monodisperse their size and refractive index can be determined uniquely
by analyzing the spectral and angular position of the various peaks and
valleys in the measured brightness and polarization curves.

There are three reasons for susgpecting the uniqueness of deductions
based on observations of the zodiacal light. Each has to do with effects
that blur the resonances and dissonances which are so characteristic of
monodisperse particles. In addition, there is no reliable information
concerning the spectral character of the zodiacal light. Thus, all deduc-
tions concerning the nature of the particles must be based on the angular
variations in the scattered light at one wavelength. As it turns out, the
angular measurements are more uniquely representative of the particle
ensemble than we initially suspected.

h.1l Geometrical Ambiguities

We were most concerned with ambiguities resulting from the observa-
tional geometry of the zodiacal light. The field of view accepts light
from all scattering angles, 6>e. From equation 8, one might therefore
expect that characteristic angular resonances and dissonances would be
averaged out by the integration over © even if the particles we