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Derivation of near-optimal pump schedules for
water distribution by simulated annealing
G McCormick* and RS Powell

Brunel University, Middlesex, UK

The scheduling of pumps for clean water distribution is a partially discrete non-linear problem with many variables. The
scheduling method described in this paper typically produces costs within 1% of a linear program-based solution, and
can incorporate realistic non-linear costs that may be hard to incorporate in linear programming formulations. These
costs include pump switching and maximum demand charges. A simplified model is derived from a standard hydraulic
simulator. An initial schedule is produced by a descent method. Two-stage simulated annealing then produces solutions
in a few minutes. Iterative recalibration ensures that the solution agrees closely with the results from a full hydraulic
simulation.
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Introduction

The problem

After filtration and sterilization, clean water is typically

pumped to covered, sterile service reservoirs, from which it

gravitates to customers. The use of service reservoirs

decouples pumping from demand, which follows a peaky

diurnal profile, and creates an opportunity to reduce costs by

pumping preferentially at times when electricity tariffs are

low, subject to the need to keep enough water in each

reservoir for system security. About 15 million tonnes of

clean water are pumped each day in England and Wales

(http://www.ofwat.gov.uk/pdffiles/leakage.pdf, Table 4),

and the power costs of the industry amount to about d110

million per year.1

Most pumps are fixed-speed devices, with only on and off

settings. Variable-speed pumps are rarer. There may be a few

discrete settings to choose, or the small range of available

speeds may be approximated by a small number of discrete

settings. A pump schedule is thus a valid series of discrete

pump settings and switching times. The efficiency of a pump

is a nonlinear function of flow that should be near a

maximum at its design flow, but reduces for both higher and

lower flows. The flow delivered by a pump is an

approximately quadratic, decreasing function of the pressure

increase across the pump. Network characteristics are also

nonlinear: a typical relationship would be Dhpq1.85 where q

is the flow and Dh is the ‘head’ gradient along a pipe

(head¼ pressure plus height). Demands vary continuously

throughout the day and it is normally assumed that they do

not depend on pressure. Hydraulic simulation requires a

series of static solutions of these nonlinear flow and head

equations and integration of their effects on reservoir levels.

Hydraulic simulation is now a mature technique, and many

packages are available (eg Epanet, Ginas, KYPIPE, Stoner,

Watnet). Given a validated and calibrated network model

with good demand estimates, it is easy to predict the effect of

a given pump schedule, even when there are many pump

stations and several reservoirs. The inverse problem

(produce a cost-effective pump schedule) is rather harder.

This is an optimization problem, which could typically be

described as:

minimize energy costs while

� keeping source output rates between upper and lower

limits;

� keeping reservoir levels in an acceptable range;

� ensuring that reservoir levels at the end of the day are

appropriate for the beginning of the next day;

� operating pumps safely (low-efficiency operation causes

damage).

There may be other constraints, such as flows not exceeding

permitted abstraction limits, upper bounds on pressure in

the network, and maximum rates of change of flow through

treatment works. Water quality limits may require con-

straints on the proportions of flow from different sources or

restrictions on water travel time to the consumer. Additional

costs might include wear and tear on pumps when switching

on and charges for maximum electricity demand. The

presence and importance of such factors varies a great deal

from case to case.
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A practical consideration is that schedules must be

produced rapidly if they are to be used operationally—

calculation should take substantially less than 15min for on-

line systems, and at most 30min for ‘open-loop’ daily

calculations.

Previous work

A very wide range of methods has been applied to the pump

scheduling problem. The earliest efforts2 were based on

dynamic programming that can cope easily with nonlinea-

rities. Unfortunately, the number of states to consider

increases exponentially with the number of reservoirs, which

makes this technique impractical when there are more than

about three reservoirs in network. Nonlinear programming

has been used to solve multiple reservoir scheduling

problems.3,4 It is typically used to calculate optimum

reservoir profiles, after which a second stage of calculation

is used to find good discrete schedules that achieve the

profiles. Since the problem is non-convex, there is no

certainty that the global optimum will be found, but good

results are reported. Linear programming (LP) is arguably a

more flexible approach and has often been used for pump

scheduling.5,6 Naturally, LP depends on finding a suitable

linearization of the problem. In some cases, the day is

divided into time-slices and the decision variable is the

proportion of each time-slice for which each pump is

switched on. This still leaves the order of on–off periods to

be determined. Some orderings may lead to unacceptable

reservoir levels within the time-slice and a collection of

heuristics may be needed to find a viable ordering.6 Mixed

integer programming is, in principle, capable of finding a

discrete pump schedule directly. Unfortunately, the problem

size is often impractical: if the day is divided into only 24

discrete periods then for 35 pumps, there will be at least 840

integer variables. There may be far more variables if the day

is divided into more time periods; more accurate models may

use 96 periods of 15min each. A much fuller review of pump

scheduling methods will be found in Ormsbee and Lansey.7

Pump schedule optimization has sometimes met resistance

from engineers and controllers because they feel that

solutions do not adequately respect subjective or hard to

measure considerations that human operators take into

account.

Meta-heuristic techniques

Meta-heuristic search techniques such as genetic algorithms

and simulated annealing (SA) have been used successfully to

solve hydraulic network design problems.8,9 Applications to

pump scheduling are rarer, because of the need to produce

solutions rapidly and reliably. Among the few accounts in

the literature are Mackle et al10 who applied genetic

algorithms to the scheduling of a system with one reservoir

and three pumps, and Goldman and Mays11 who used the

same approach on a similar system with water quality

constraints. SA operating directly on a hydraulic simulation

would be far too slow for routine use. However, if there is a

hydraulic linearization that makes LP a viable part of the

solution process, that same linearization can speed up SA.

Moreover, advantage can be taken of good starting points to

further speed up optimization, using two-stage SA.12 For

straightforward problems, this method offers no advantage

over LP. However, SA based on linearized hydraulics can

potentially cope with nonlinear constraints, nonlinear cost

functions, and unique local considerations. This may make

solutions more acceptable to network operators and

controllers.

This paper describes a hydraulic network linearization

based on automatic interaction with Epanet,13 a hydraulic

simulator. A two-stage SA algorithm is then outlined,

describing the neighbourhood structure and cooling schedule

determination. A previous schedule and/or simple descent

may provide a good starting point. SA results are compared

with a lower bound from the LP relaxation, and with a

progressive mixed integer method. The use of nonlinear cost

functions is then discussed. Finally, conclusions are sum-

marized.

Hydraulic network linearization

We have already shown that hydraulic network simulation

requires the solution of numbers of simultaneous nonlinear

equations. Different scheduling methods have used both

implicit variables such as reservoir levels and explicit

variables such as pumping durations. We now propose a

choice of variables that relate pump scheduling decisions or

inputs to scheduling outputs or constraints almost linearly.

Demand variations, and their effects on network flows,

linear or otherwise, may be accounted for by dividing the

scheduling period into a number of discrete time-slices,

during which tariffs are constant and demands are almost

constant. We will also assume that all pumps are either off or

on throughout a time-slice, so that the resulting pressures

flows and efficiencies are constant.

When pumps do not interact hydraulically, for instance

when they connect different sources to different reservoirs,

their effects on sources and reservoirs can be considered

independently. However, when pumps are hydraulically

close, there can be significant interactions. For instance, if

two pumps force water into the same main, and one

generates much higher pressures, the other pump might stall

or run inefficiently. Suppose pumps are placed in groups

such that pumps that interact with each other are in the same

group. Each possible combination of switched-on pumps

from such a group may then have unique effects at a given

time. By making the decision variable the combination

chosen, that is, which combination of pumps will be

switched on, and calibrating the effect of each combination,

PPL_JORS_2601718

2 Journal of the Operational Research Society Vol. ] ], No. ] ]



UNCORRECTED P
ROOF

the nonlinear interactions are accounted for. By definition,

pumps in different groups will not interact, and the the effect

of combinations from different groups will be the linear sum

of the individual combinations’ effects.

Pressures and therefore flows are affected by changes in

reservoir levels. In many networks this effect is small, of the

order of 1%. The largest portion of this effect can be taken

into account by evaluating linear coefficients assuming a set

of typical reservoir profiles. The inaccuracy is also reduced

by keeping the time-slices relatively brief.

The linearization described above has similarities with

techniques that have been used previously, for example, by

Burnell et al,6 and Ulanicki and Orr.14 The linearized model

can be extended to include the first-order effects of reservoir

levels on flows, at the cost of some reduction in computa-

tional speed. This extension would transform an LP into a

quadratic model, but is easy to apply with SA. This

extension is not discussed here. In practice, it is also possible

to optimize, recalibrate to take account of changes from

‘typical’ reservoir profiles, and then reoptimize, and in many

cases a stable and consistent result can be obtained in this

way.

The linearized models used in this paper were based on 24

time-slices of 1 h each. They were built using an automatic

process that interacted with the Epanet hydraulic simulator:

1. Identify and remove from consideration closed-loop

controls and affected reservoirs.

2. Simulate operation of all individual pumps and all pairs

of pumps to identify interactions.

3. Form pumps that may interact nonlinearly into groups.

4. Form all possible combinations of switched-on pumps for

each group, including the null combination (all pumps

switched off).

5. Remove un-needed combinations (due to identical

pumps).

6. Remove combinations that break key constraints (pres-

sure, efficiency, source flow).

7. Calibrate the model by simulating all pump combina-

tions, with the pumps in a combination switched on and

all others switched off.

For simplicity, only fixed-speed pump settings (ie on/off)

were considered—variable-speed pumps can be dealt with as

multiple pumps.

Formulation of the optimization model (linear costs and

constraints)

A schedule is a valid assignment of a combination of

switched-on pumps from each group in each time-slice.

Suppose that the set of valid pump combinations for pump

group g is Vg. Let xgc(t)¼ 1 if combination cAVg is assigned

to group g in time-slice t, otherwise xgc(t)¼ 0. One and only
one combination must be chosen for each group and time-

slice. X
c2Vg

xgcðtÞ ¼ 1 8g; t ð1Þ

Let r¼ reservoir, s¼ source, D¼ time-slice duration and

egc(t)¼ the energy cost per unit time of combination cAVg at

time t. The objective function is

Minimize cost¼ energy costþpenalty costs

C ¼D
X
g

X
c2Vg

X
t

egcðtÞxgcðtÞ þ
X
r

KrPK

þ
X
s

X
t

½UsðtÞpU þ HsðtÞPH 	

þ
X
s

QsPQ þ
X
r

X
t

½MrðtÞPM þ ArðtÞPAO

þ BrðtÞPB þ OrðtÞP	

ð2Þ

If source costs vary, then charges for water input can also be

included.

All costs after the first term are penalty costs, and PU, PH,

PQ, PM, PA, PB and PO are penalty cost coefficients

associated with soft constraints. Constraints and associated

variables are explained below.

Let L¼ reservoir level, rrgc(t)¼ a reservoir impact (rate of
level change) for the combination cAVg at time t. Then for

all r, t material balance requires

LrðtÞ ¼Lrðt
 1Þ
þ D

X
g

X
c2Vg

rrgcðtÞxgcðtÞ

þ ArðtÞ þ BrðtÞ

ð3Þ

Initial levels Lr(0) are given. Variables A¼ unmet demand
(reservoir level zero) and B¼ spillage are introduced because
of physical limits on reservoir volumes:

8r; 0pLrðtÞpLfullr ð4Þ

For security reasons, reservoirs are not normally allowed to

empty or fill completely. IfM, O, and K represent deviations

from specified minimum, maximum and final target reservoir

levels, then for all r, t

MrðtÞ ¼MaxðLminr 
 LrðtÞ; 0Þ ð5Þ

OrðtÞ ¼MaxðLrðtÞLmaxr; 0Þ ð6Þ

Kr ¼MaxðLtargetr 
 Lrðt ¼ lastÞ; 0Þ ð7Þ

Source flows F are calculated from the schedule and the

linear model.

FsðtÞ ¼
X
g

X
c2Vg

fsgcðtÞxgcðtÞ ð8Þ

where fsgc(t) represents the linear effect of combination

cAVg on source s at time t.

PPL_JORS_2601718
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There are management and physical constraints on

sources. If U, H and Q represent deviations from minimum

maximum and cumulative limits on source inputs, then

UsðtÞ ¼MaxðFminsðtÞ 
 FsðtÞ; 0Þ ð9Þ

HsðtÞ ¼MaxðFsðtÞFmaxsðtÞ; 0Þ ð10Þ

Qs ¼Max
X
t

FsðtÞ 
 Fcumaxs; 0

 !
ð11Þ

The formulation could be simplified, for instance if Lr(t)

represented only the available water (ie the excess over

Lminr) constraint (4) could be modified and a set of variables

{Mr} and Equation (5) eliminated. Unfortunately, this

would result in hard constraints that are too inflexible.

There may be occasions when the nominal constraints

cannot be met, but schedules must always be supplied. The

above formulation provides soft or elastic constraints, which

can be broken at a cost. Penalties normally drive lost

demand, spillage, low reservoirs and other soft infeasibilities

out of the solution. Soft constraints are also vital, because it

is difficult to envisage an effective metaheuristic for pump

scheduling that maintains strict feasibility while exploring

possible schedules.

A simple descent method

The neighbourhood of a schedule is defined to be the

set of schedules that can be obtained by choosing any

time-slice and any group, and changing the combination

chosen at that time for that group to any other valid

combination.

A simple descent method can improve schedules by

systematically searching the neighbourhood of a schedule,

and replacing one combination at a time by an improving

combination, then searching the neighbourhood of the new

schedule and so on. Descent normally finds a local optimum,

which it cannot then escape. This is a drawback, but simple

descent models may still be useful for making small changes

to schedules, for instance when adjusting yesterday’s

schedule to take partial account of today’s slightly different

demands, or when correcting for the results of small

calibration errors.

Another use of simple descent is in scheduling pumps in

finer increments than a single time-slice. If pumps may be

switched on or off in smaller increments, then the optimiza-

tion will have more freedom, and costs may be reduced.

Unfortunately, the solution time for many optimization

methods is proportional to the square of the number of

time-slices. A compromise is to find a near-optimal schedule

with 24 time-slices, split the 24 time-slice solution into

96� 15min intervals, and then apply the simple descent

method to obtain some advantage from the shorter

on–off periods at a low computational cost. This procedure

was applied to the SA results, with outcomes that will be

found in Table 1.

SA and two-stage SA

Simulated annealing

In contrast to simple descent, SA has a random element that

allows some non-improving changes. This enables SA to

climb out of a local optimum, and eventually find a global

optimum. A central part of the procedure is

Generate a new ‘neighbouring’ schedule at random.

Accept or reject the change at random according to the

Metropolis criterion

PrðacceptÞ ¼Min exp

Dcost

T

� �
; 1

� �
ð12Þ

At high ‘temperatures’ (T), SA behaves like a random

search, and at low temperatures, it is more like simple

descent. At any given T, a series of such random changes

forms a Markov chain. After sufficient changes, the

distribution of costs at a given temperature will reach a

thermal equilibrium, and the mean of this distribution will

be an increasing function of temperature. At a given

temperature, approximate equilibrium is normally reached

within about Ns steps, where Ns is the neighbourhood

size. When Nt is the number of time-slices and NCg is the

number of combinations for group g the size of each

neighbourhood is

Ns ¼ Nt
X
g

Ncg ð13Þ

By starting at a very high temperature, and gradually

reducing the temperature while maintaining thermal equili-

brium, a global optimum will eventually be reached, as long

as the neighbourhood structure allows every possible state to

be reached from every other state. This process is illustrated

in Figure 1, which was derived by repeating the process of

SA many times. Unfortunately, keeping close enough to

thermal equilibrium to guarantee optimality would take

infinite time, and solution by complete enumeration would

be quicker. In practice, good results can be achieved by

starting at a temperature where most changes are accepted

(eg point X in Figure 1), and reducing the temperature in

steps of a few percent while maintaining each temperature

just long enough to reach an approximate, quasi-equili-

brium. In the work presented here, the length of each

Markov chain at a given temperature is normally set at 2Ns

and temperatures are reduced in steps of 5%. Annealing is

terminated when no changes have been accepted for a

predetermined number of trials, typically 4Ns (two chains).

PPL_JORS_2601718
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Two stage SA

Classic SA starts with a random solution or schedule.

Intuitively, one might want to start with a good initial

schedule. The previous day’s schedule is often a good

starting point. After applying the simple descent method to

adjust for changes in conditions, the cost may be only 10 or

20% above the global optimum. If SA is then applied, what

initial temperature should be chosen?

Points A to C in Figure 1 each have a cost that would be

typical of an initial schedule obtained in this way, but

different initial temperatures. At point A, the initial

temperature is the same as at X, and the initial schedule

will rapidly be randomized. The time taken to converge will

then be the same as with the classic method, and there will be

no benefit from starting with a good initial schedule. The

computational time needed could be reduced by starting

with a lower temperature. If the initial temperature is too

low (point C), the process will be ‘quenched’ and the

schedule will converge prematurely to a local optimum, as

with descent. Suppose that a temperature can be found at

which the equilibrium mean cost is very similar to the cost of

the starting schedule (eg point B). Assume also that any

schedule with a certain cost would in some sense be close to

the centre of the equilibrium distribution with that cost, then

it follows that because Markov processes have no memory,

SA can start at that point and then continue while

maintaining quasi-equilibrium. This is two-stage SA. Using

this approach we can save a great deal of time.

PPL_JORS_2601718

Table 1 Comparisons of SA and LP schedules

Time (s) d Cost (24 time-slices) % of LB

Network A: one Source, one Reservoir, four Pumps in one Group 294.96
Lower bound
Progressive MIP 3 295.83 100.3
SA min 295.76 100.3
SA mean 7.6 296.75 100.6
SA max 297.81 100.96

24 time-slices 96 time-slices

Time (s) d Cost % of LB % of LB Time (s)

Network B: two Sources, two Reservoirs, seven Pumps in three Groups
Lower bound 1831.61
Progressive MIP 7.3 1860.3 101.6 101 9.1
SA min 1859.13 101.5 100.7
SA mean 13.4 1865.24 101.8 101.3 15.4
SA max 1871.77 102.2 101.8

Network C: one Source, five Reservoirs, nine Pumps in five Groups
Lower bound 1079.51
Progressive MIP 10 1089.75 100.95 100.01 13
SA min 1090.25 100.99 100.1
SA mean 29 1095.64 101.5 100.6 32
SA max 1104.12 102.3 101.3

Network D: 13 Sources, 10 Reservoirs, 35 Pumps in 20 Groups
Lower bound 3920.57
Progressive MIP 233 3947.20 100.7 100.1 289
SA min 3957.21 100.9 100.3
SA mean 588 3968.66 101.2 100.5 644
SA max 3990.34 101.8 101

Mean Cost (£/day) vs. Temperature (Network C)

B C

Temperature
101001,00010,000100,0001,000,00010,000,000

500,000

450,000

400,000

350,000

300,000

250,000

200,000

150,000
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0

X

A B B

C
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t

Figure 1 Annealing of a scheduling problem.
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Implementation

The method implemented for scheduling is based on two-

stage SA. The most reliable way of setting the starting

temperature is to deduce it from the typical shape of Figure 1

for the problem under consideration, which is not difficult

for a routine scheduling problem. As suggested earlier, after

annealing a simple descent method can be applied as a final

stage to compensate for small nonlinearities and to get some

benefit from reducing time-slice durations. Figure 2 sum-

marizes the entire procedure.

Comparison of SA and LP-based results

Some results from the two-stage SA method are given in

Table 1. Since there is a random element to SA, the

minimum, maximum and mean costs of 10 runs of the SA

method are given. Before considering nonlinear costs and

constraints, it is useful to compare this local search technique

with the optima that can be achieved by LP. By replacing

Eqs. (5)–(7) and (9)–(11) with inequalities, and allowing

Xgc(t) to be a continuous variable representing the propor-

tion of a pump combination to be used in a time-slice, the

model described above becomes an LP. This is a linear

relaxation of the discrete problem, so solution of the LP

gives a lower bound to the true schedule cost. Discrete and

therefore implementable solutions might approach this

bound if the time-slice duration is small, but this is not

guaranteed. The results of a ‘progressive mixed integer’

formulation are also given for comparison. This is based on

LP but does not guarantee optimality.15

Comparisons are made for three hydraulic networks.

Networks A–C are small-to-medium-sized networks. Net-

work D, with 13 sources, 10 reservoirs and 35 fixed speed

pumps is at the higher end of network sizes, though larger

ones exist. The 96 time-slice results were obtained by

splitting the 24 time-slice solution into 15min intervals,

then using a descent method. Direct solution with 15min

time-slices could be 16 times slower. The computer was

a 1GHz PC.

The closeness of the costs in Table 1 confirms that the

suggested neighbourhood structure, cooling process and

two-stage methodology works well, and suggests that this

approach may also give good results in cases where

constraints and costs are not linear, and LP-based solutions

are not available for comparison.

It can be seen that the final SA schedules are within 1.8%

of the lower bound, and on average they are within 0.6% of

the progressive mixed integer schedules. SA takes over twice

as long as the other method, albeit using unoptimized,

object-oriented code. Nonetheless, the solution time for the

larger problem is suitable for practical use, and could easily

be reduced by using a faster PC.

It should be borne in mind also that hydraulic models are

never perfect. As much of the infrastructure is old, buried

and hard to inspect, there is structural uncertainty. It is

usually impossible to measure the resistance of individual

pipes, and pump characteristics deteriorate in time so there is

parametric uncertainty. Finally, demands cannot be per-

fectly predicted. These uncertainties probably give rise to

errors greater than the difference between the LP and SA

results.

Nonlinear cost functions

As stated above, the key advantage over MIP or LP is the

ability to deal with nonlinear constraints and cost functions.

Two nonlinear costs were examined—pump switching costs

and maximum demand charges (MDCs).

Pump switching costs

There is a certain amount of wear and tear plus energy loss

and sometimes even manual labour involved when a large

water pump is switched on. Switching constraints or costs

would make mixed integer formulations even less practical,

and cannot be formulated in pure LP. They can be included

heuristically when deriving discrete schedules from contin-

uous results, but optimality is lost.

By contrast, it is easy to include a switching cost or

penalty cost in SA and in descent methods. Figure 3

demonstrates the effect of including switching costs in the

procedure described in Figure 2. The left-hand side shows a

schedule obtained by SA without including switching costs.

Total cost was d1104.60. Bold horizontal bars indicate

periods when particular pumps are on: there are 29 distinct

periods in this schedule. The right-hand side shows a

PPL_JORS_2601718

Optionally 
do further 
simulated 
annealing 
with
recalibrated
model. 

 Stabilise Schedule

Provide starting schedule (Previous/Descent)

Choose appropriate temperature 
Do simulated annealing starting from 
good starting schedule 
Always remember best-so-far solution

Compare linearised and full 
hydraulic simulation of best-so-
far schedule. 
If cost difference < threshold % 
then end stabilisation and
remember best-validated schedule

Recalibrate linearised hydraulic
model round best-so far solution
Split into shorter time slices. 
Apply descent method (adjusts 
for small changes) 

Report best validated schedule

Figure 2 A complete scheduling procedure.
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schedule derived after including switching costs. Total cost is

d1105.97, including switching costs of d11.70, about 1% of

total cost. Other costs were little changed—in fact, in this

case, they reduced a little, due to the variability of SA results.

The number of distinct pump ‘on’ periods is just 12, which

would be more acceptable in practice.

Maximum demand charges

Electricity supply utilities sometimes make significant

charges for peak power consumption (measured as kVA),

in order to represent infrastructure costs. These charges are

applied to discrete zones, which may consist of one or more

pumping stations. MDCs were added to the SA cost

function, but no modification was made to the method.

Figure 4 shows power consumptions for two different MDC

groups. On the left, power consumption is shown for a near-

optimal schedule obtained by SA with MDCs at zero. On

the right, significant MDCs are included. For both MDC

groups, the smoothing of power consumption is consider-

able. MDCs cannot be included in a pure LP because they

may be incurred even if pumps are only used for a fraction of

an hour. Using MIP a lower bound of d442.71 per day was

determined for this example. The progressive method result

was d444.51. Using SA, total cost with MDC was d455.43.

The degree of difficulty in solving with MDC charges in our

MIP formulation depends on whether or not the MDC

zones match the pump groups and on the number of MDC

zones. In some particularly difficult cases, it proved

impossible even to find feasible MIP solutions for network

D in less than an hour, but there was no such difficulty

with SA.

Both with pump switch costs and with MDCs, it was easy

to add a new cost function to the SA scheduler. The only

other changes made were to the starting temperatures. This

ease of formulation is one of the attractions of SA, but it

should not be assumed that solving a model with nonlinear

costs or constraints will always be straightforward. This is

illustrated by Figure 5, which shows mean costs ( d per day)

versus temperatures for several runs of SA for network A

PPL_JORS_2601718

0 hrs 24 hrsTime

Pump 1

Pump 2

Pump 3 

Pump 4

Pump 5

Pump 6

Pump 7

Pump 8

Pump 9

0 hrs 24 hrsTime

Network C Pump Schedule, No Switch Cost Network C Pump Schedule, No Switch Cost 1% 

Figure 3 Schedules derived without switch costs (left) and with switch costs (right).
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Figure 4 Power usage, without (left) and with (right) maximum demand charges (two MDC groups).
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with MDCs. The shape is unlike Figure 1. There appear to

be a number of phase transitions associated with changes

from one maximum kVA to another. Observation of

repeated runs showed that sometimes the annealing process

would be stuck in a high-cost phase for a long time before

suddenly finding a much lower cost, and sometimes the

lowest-cost phase might not be found at all. Reflection

shows why. Assume that the schedule being perturbed has

say five time-slices with a peak power requirement of

100kVA, and that the MDC is substantial. Assume that the

optimum solution would have a peak requirement of 50kVA

but higher energy use. If the kVA of any of the 5 time-slices

is reduced to 50kVA, there will be no change in the MDC.

The benefit will be masked until five successive improbable

changes have been made. It is only possible to reach certain

states with great difficulty, and to be certain to reach the

lowest-cost phase using normal SA a much slower rate of

cooling is needed at certain temperatures. Paradoxically, the

problem appears to be less severe in cases that are more

complex, because they have many more pump combinations

to choose between and therefore many more, more closely

spaced kVA levels, with higher transition probabilities.

These are exactly the cases that may be difficult for classical

methods. Nonetheless, relative to other methods, SA results

were poor for the MDC problem, even with slow cooling. A

different neighbourhood structure that settles the peak

power use at high temperatures and schedule timings at

lower temperatures might help, but such a one has not yet

been found.

Summary and conclusion

Pump scheduling is a nonlinear, non-convex partially

discrete problem with large numbers of variables. Existing

methods cannot guarantee optimality for non-trivial cases

due to non-convexity and the need for heuristic discretiza-

tion of linear solutions. This paper has shown that two-stage

SA can produce near-optimal discrete schedules in a time

short enough for routine operational use. Model building is

based on automatic interaction with a hydraulic simulator

and offers potentially wide generality and applicability. The

model can be extended to deal with nonlinear effects from

reservoir-level variations. The method readily allows inclu-

sion of arbitrary nonlinear costs and constraints, which

enhances the realism and acceptability of the schedules.

Pump switching costs have been successfully implemented.

Little effort was required to include MDCs. Poor results in

this case showed that while SA will in principle work with

arbitrary cost functions, it cannot be assumed that good

results will always be obtained without rethinking the model

or the neighbourhood structure.

Other costs and constraints warrant investigation. For

example, reservoir security is a complex nonlinear function

of the diurnal reservoir profile. There should be benefit in

using a direct constraint on security rather than the

conventional proxy, which is a simple lower limit on level.

There is scope for further work on the automatic setting of

start temperatures for two-stage SA. There is no problem in

routine scheduling, but an efficient method for new or out of

the ordinary circumstances would be useful.

A wide variety of sophisticated cooling schedules has been

discussed in the literature, for example Li et al.16 One of

them might provide further time savings or improved

optimality. Alternatively or additionally penalty charges

could be varied with temperature. These possibilities might

be particularly relevant when MDCs are included.

Notation

C pump combination index

g group index

r service reservoir index

s source index

t time-slice index

x proportion of a combination used in the

schedule

A unmet demand

B spillage

C total cost

D time-slice duration

F flow from source

Fcumax maximum permitted daily source output

Fmax maximum permitted flow rate

Fmin minimum permitted flow rate

H deviation above maximum permitted

source flowrate

K deviation from end-target reservoir level

L service reservoir level

Lfull physical maximum reservoir level
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Figure 5 Mean cost versus temperature for repeated runs of
SA, network A with MDCs.
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Lmax permitted maximum reservoir level

Lmin minimum permitted reservoir level

Ltarget desired end-of-day reservoir level

M deviation below minimum permitted re-

servoir level

Nt number of time-slices

Ns neighbourhood size

Nc number of combinations

O deviation above maximum permitted re-

servoir level

P penalty cost

Q deviation above maximum permitted daily

source output.

T annealing temperature

U deviation below minimum permitted

source flow rate

Vg set of admissible combinations of switched

on pumps in group g

e cost impact (energy cost per unit time)

f source impact (contribution to flowrate)

r reservoir impact (contribution to rate of

change of level)
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