6 research outputs found

    miR-155 overexpressing monocytes resemble HLA highISG15 + synovial tissue macrophages from patients with rheumatoid arthritis and induce polyfunctional CD4+ T cell activation

    Get PDF
    MicroRNAs (miRs) are known to regulate pro-inflammatory effector functions of myeloid cells, and miR dysregulation is implicated in rheumatoid arthritis (RA), a condition characterized by inflammation and destruction of the joints. We showed previously that miR-155 is increased in myeloid cells in RA and induces pro-inflammatory activation of monocytes and macrophages; however, its role at the interface between innate and adaptive immunity was not defined. Here, RNA-sequencing revealed that overexpression of miR-155 in healthy donor monocytes conferred a specific gene profile which bears similarities to that of RA synovial fluid-derived CD14+ cells and HLAhighISG15+ synovial tissue macrophages, both of which are characterized by antigen-presenting pathways. In line with this, monocytes in which miR-155 was overexpressed, displayed increased expression of HLA-DR and both co-stimulatory and co-inhibitory molecules, and induced activation of polyfunctional T cells. Together, these data underpin the notion that miR-155-driven myeloid cell activation in the synovium contributes not only to inflammation but may also influence the adaptive immune response

    Deep-phenotyping of Tregs identifies an immune signature for idiopathic aplastic anemia and predicts response to treatment

    Get PDF
    Idiopathic aplastic anemia (AA) is an immune-mediated and serious form of bone marrow failure. Akin to other autoimmune diseases, we have previously shown that in AA regulatory T-cells (Tregs) are reduced in number and function. The aim of this study was to further characterize Treg subpopulations in AA and investigate the potential correlation between specific Treg subsets and response to immunosuppressive therapy (IST) as well as their in-vitro expandability for potential clinical use. Using mass cytometry (CyTOF) and an unbiased multidimensional analytical approach, we identified two specific human Treg subpopulations (Treg A and Treg B) with distinct phenotypes, gene-expression, expandability and function. Treg subpopulation B, predominates in IST responder patients, has a memory/activated phenotype (with higher expression of CD95, CCR4 and CD45RO within FOXP3hi, CD127lo Tregs), expresses the IL- 2/STAT5 pathway and cell-cycle commitment genes. Furthermore, in-vitro expanded Tregs become functional and with the characteristics of Treg subpopulation B. Collectively, this study identifies human Treg subpopulations that can be used as predictive biomarkers for response to IST in AA and potentially other autoimmune diseases. We also show that Tregs from AA patients are IL-2 sensitive and expandable in-vitro, suggesting novel therapeutic approaches such as low dose IL-2 therapy and/or expanded autologous Tregs and meriting further exploration
    corecore