503 research outputs found

    Viscous analyses for flow through subsonic and supersonic intakes

    Get PDF
    A parabolized Navier-Stokes code was used to analyze a number of diffusers typical of a modern inlet design. The effect of curvature of the diffuser centerline and transitioning cross sections was evaluated to determine the primary cause of the flow distortion in the duct. Results are presented for S-shaped intakes with circular and transitioning cross sections. Special emphasis is placed on verification of the analysis to accurately predict distorted flow fields resulting from pressure-driven secondary flows. The effect of vortex generators on reducing the distortion of intakes is presented. Comparisons of the experimental and analytical total pressure contours at the exit of the intake exhibit good agreement. In the case of supersonic inlets, computations of the inlet flow field reveal that large secondary flow regions may be generated just inside of the intake. These strong flows may lead to separated flow regions and cause pronounced distortions upstream of the compressor

    An analytical and experimental study of a short s-shaped subsonic diffuser of a supersonic inlet

    Get PDF
    A subscale HiMAT forebody and inlet was investigated over a range of Mach numbers to 1.4. The inlet exhibited a transitory separation within the diffuser but steady state data indicated reattachment at the diffuser exit. A finite difference procedure for turbulent compressible flow in axisymmetric ducts was used to successfully model the HiMAT duct flow. The analysis technique was further used to estimate the initiation of separation and delineate the steady and unsteady flow regimes in similar S-shaped ducts

    Analytical modeling of circuit aerodynamics in the new NASA Lewis wind tunnel

    Get PDF
    Rehabilitation and extention of the capability of the altitude wind tunnel (AWT) was analyzed. The analytical modeling program involves the use of advanced axisymmetric and three dimensional viscous analyses to compute the flow through the various AWT components. Results for the analytical modeling of the high speed leg aerodynamics are presented; these include: an evaluation of the flow quality at the entrance to the test section, an investigation of the effects of test section bleed for different model blockages, and an examination of three dimensional effects in the diffuser due to reentry flow and due to the change in cross sectional shape of the exhaust scoop

    Age grading \u3cem\u3eAn. gambiae\u3c/em\u3e and \u3cem\u3eAn. arabiensis\u3c/em\u3e using near infrared spectra and artificial neural networks

    Get PDF
    Background Near infrared spectroscopy (NIRS) is currently complementing techniques to age-grade mosquitoes. NIRS classifies lab-reared and semi-field raised mosquitoes into \u3c or ≥ 7 days old with an average accuracy of 80%, achieved by training a regression model using partial least squares (PLS) and interpreted as a binary classifier. Methods and findings We explore whether using an artificial neural network (ANN) analysis instead of PLS regression improves the current accuracy of NIRS models for age-grading malaria transmitting mosquitoes. We also explore if directly training a binary classifier instead of training a regression model and interpreting it as a binary classifier improves the accuracy. A total of 786 and 870 NIR spectra collected from laboratory reared An. gambiae and An. arabiensis, respectively, were used and pre-processed according to previously published protocols. The ANN regression model scored root mean squared error (RMSE) of 1.6 ± 0.2 for An. gambiae and 2.8 ± 0.2 for An. arabiensis; whereas the PLS regression model scored RMSE of 3.7 ± 0.2 for An. gambiae, and 4.5 ± 0.1 for An. arabiensis. When we interpreted regression models as binary classifiers, the accuracy of the ANN regression model was 93.7 ± 1.0% for An. gambiae, and 90.2 ± 1.7% for An. arabiensis; while PLS regression model scored the accuracy of 83.9 ± 2.3% for An. gambiae, and 80.3 ± 2.1% for An. arabiensis. We also find that a directly trained binary classifier yields higher age estimation accuracy than a regression model interpreted as a binary classifier. A directly trained ANN binary classifier scored an accuracy of 99.4 ± 1.0 for An. gambiae and 99.0 ± 0.6% for An. arabiensis; while a directly trained PLS binary classifier scored 93.6 ± 1.2% for An. gambiae and 88.7 ± 1.1% for An. arabiensis. We further tested the reproducibility of these results on different independent mosquito datasets. ANNs scored higher estimation accuracies than when the same age models are trained using PLS. Regardless of the model architecture, directly trained binary classifiers scored higher accuracies on classifying age of mosquitoes than regression models translated as binary classifiers. Conclusion We recommend training models to estimate age of An. arabiensis and An. gambiae using ANN model architectures (especially for datasets with at least 70 mosquitoes per age group) and direct training of binary classifier instead of training a regression model and interpreting it as a binary classifier

    Comprehension of Role Reversal in Chimpanzees: Evidence of Empathy?

    Get PDF
    Four chimpanzees, Pan troglodytes, were individually trained to cooperate with a human partner on a task that allowed both participants to obtain food rewards. In each chimpanzee-human dyad, one of the participants (the informant) could see which pair of food trays on a four-choice apparatus was baited, but had no means of obtaining it. The other participant (the operator) could pull one of four handles to bring a pair of the trays within reach of both participants, but could not see which choice was correct. Two of the chimpanzees were initially trained as informants and adopted spontaneous gestures to indicate the location of the food. The two other chimpanzees were trained as operators and learned-to respond to the pointing of their human partner. After the chimpanzee subjects reached near perfect performance, the roles in each chimpanzee-human dyad were reversed. Three of the four chimpanzees showed immediate evidence of comprehension of their new social role. The results are discussed in the context of cognitive empathy and the potential for future research on social attribution in non-human primates

    Delayed self-recognition in children with autism spectrum disorder.

    Get PDF
    This study aimed to investigate temporally extended self-awareness (awareness of one’s place in and continued existence through time) in autism spectrum disorder (ASD), using the delayed self-recognition (DSR) paradigm (Povinelli et al., Child Development 67:1540–1554, 1996). Relative to age and verbal ability matched comparison children, children with ASD showed unattenuated performance on the DSR task, despite showing significant impairments in theory-of-mind task performance, and a reduced propensity to use personal pronouns to refer to themselves. The results may indicate intact temporally extended self-awareness in ASD. However, it may be that the DSR task is not an unambiguous measure of temporally extended self-awareness and it can be passed through strategies which do not require the possession of a temporally extended self-concept

    A Reconfigurable Motor for Experimental Emulation of Stator Winding Inter-Turn and Broken Bar Faults in Polyphase Induction Machines (Journal article)

    Get PDF
    The benefits and drawbacks of a 5-hp reconfigurable induction motor, which was designed for experimental emulation of stator winding interturn and broken rotor bar faults, are presented in this paper. It was perceived that this motor had the potential of quick and easy reconfiguration to produce the desired stator and rotor faults in a variety of different fault combinations. Hence, this motor was anticipated to make a useful test bed for evaluation of the efficacy of existing and new motor fault diagnostics techniques and not the study of insulation failure mechanisms. Accordingly, it was anticipated that this reconfigurable motor would eliminate the need to permanently destroy machine components such as stator windings or rotor bars when acquiring data from a faulty machine for fault diagnostic purposes. Experimental results under healthy and various faulty conditions are presented in this paper, including issues associated with rotor bar-end ring contact resistances that showed the drawbacks of this motor in so far as emulation of rotor bar breakages. However, emulation of stator-turn fault scenarios was successfully accomplished

    Space and transatmospheric propulsion technology

    Get PDF
    This report focuses primarily on Japan's programs in liquid rocket propulsion and propulsion for spaceplane and related transatmospheric areas. It refers briefly to Japan's solid rocket programs and to new supersonic air-breathing propulsion efforts. The panel observed that the Japanese had a carefully thought-out plan, a broad-based program, and an ambitious but achievable schedule for propulsion activity. Japan's overall propulsion program is behind that of the United States at the time of this study, but the Japanese are gaining rapidly. The Japanese are at the forefront in such key areas as advanced materials, enjoying a high level of project continuity and funding. Japan's space program has been evolutionary in nature, while the U.S. program has emphasized revolutionary advances. Projects have typically been smaller in Japan than in the United States, focusing on incremental advances in technology, with an excellent record of applying proven technology to new projects. This evolutionary approach, coupled with an ability to take technology off the shelf from other countries, has resulted in relatively low development costs, rapid progress, and enhanced reliability. Clearly Japan is positioned to be a world leader in space and transatmospheric propulsion technology by the year 2000

    Noise Stabilization of Self-Organized Memories

    Full text link
    We investigate a nonlinear dynamical system which ``remembers'' preselected values of a system parameter. The deterministic version of the system can encode many parameter values during a transient period, but in the limit of long times, almost all of them are forgotten. Here we show that a certain type of stochastic noise can stabilize multiple memories, enabling many parameter values to be encoded permanently. We present analytic results that provide insight both into the memory formation and into the noise-induced memory stabilization. The relevance of our results to experiments on the charge-density wave material NbSe3NbSe_3 is discussed.Comment: 29 pages, 6 figures, submitted to Physical Review

    Advanced imaging capabilities by incorporating plasmonics and metamaterials in detectors

    Get PDF
    Ultraviolet detection is often required to be made in the presence of a strong background of solar radiation which needs to be suppressed, but materials limitations at these wavelengths can impact both filter and sensor performance. In this work, we explore the use of 1D photonic bandgap structures integrated directly onto a Si sensor that can operate with solar blindness. These filters take advantage of the improved admittance with silicon to significantly improve throughput over conventional stand-alone bandpass filter elements. At far ultraviolet wavelengths these filters require the use of non-absorbing dielectrics such as the metal fluoride materials of MgF_2, AlF_3 and LiF. The latest performance of these 1D multilayer filters on Si photodiodes and CCD imaging sensors is demonstrated. We have also extended these 1D structures to more complex multilayers guided by the design concepts of metamaterials and metatronics, and to 2D patterned plasmonic hole array filters fabricated in aluminum. The performance of sensors and test filter structures is presented with an emphasis on UV throughput
    • …
    corecore