43 research outputs found

    Low-level 226Ra determination in groundwater by SF-ICP-MS: optimization of separation and pre-concentration methods

    Get PDF
    Inductively coupled plasma mass spectrometry (ICP-MS) techniques have been widely used for analysis of long-lived environmental radionuclides. In this paper, we present an optimization of the sector field (SF)-ICP-MS technique for the analysis of 226Ra in groundwater samples using a method of pre-concentration of radium in water samples. The separation protocol and a sequential application of ion exchange and extraction chromatography have been optimized, and related polyatomic interferences and matrix effects affecting the 226Ra signal were investigated. Analyzing 12 replicates (water spiking at 22 fg g−1 of 226Ra), the 226Ra recovery efficiency close to 100 % has been obtained. The instrumental 226Ra detection limit of 0.09 fg g−1 (3σ criterion) and the absolute detection limit of 0.05 fg in a 25-mL groundwater sample have been reached. An optimization of the radium separation method and a pre-concentration of radium in groundwater samples led to high radium recoveries, almost up to 100 %. The same could be said with respect to the separation of the interfering elements, important for the quantitative 226Ra analysis by SF-ICP-MS. The improvements in the separation and pre-concentration techniques also helped to improve the 226Ra detection limit down to 0.05 fg/25 mL of groundwater sample

    A century of warfare shoots holes in anti-Caulerpa campaign

    Get PDF
    Effort to have all varieties of the marine alga Caulerpa taxifolia listed as noxious weeds hinges on the argument that the alga's proliferation in the Mediterranean Sea is a cause and not a consequence of environmental degradation. Until now, the occurrence of two populations in a pristine part of the northern Mediterranean near the island of Porquerolles has upheld this claim. Here we show that the alga's development at Porquerolles is indeed a consequence of environmental degradation caused by military weapons' impacts on seagrass beds during the last century. The available data show that substratum enrichment plays a key role in fostering development of Caulerpa, irrespective of whether this results directly from pollution or from the impacts of pollution and other anthropogenic factors on benthic vegetation cover

    Mineralogy, geochemistry and classification of the new Smolenice iron meteorite from Slovakia

    Get PDF
    Abstract: A single 13.95 kg mass of a slightly weathered iron meteorite was found in the forest near Smolenice (48°31.2’N, 17°23.9’E; Trnava County, Slovakia). The bulk chemical composition (in wt. %) is: Fe 88.78, Ni 8.16, Co 0.38, P 0.05, S˂0.006 and (in ÎŒg/g): Ge˂0.18, Ir 1.67, Ga 1.80, Cr 87.3, Cu 135.1, As 4.52, Mo 5.82, Sn 1.53, W 0.56, Re 0.18, Ru 3.56, Rh 0.90, Pd 4.12, Pt 5.35, Au 1.19, Zn˂5, B˂0.68, Pb˂0.06. Bulk geochemistry, and Ni, Ga, Ge and Ir contents in particular suggest that the meteorite is an octahedrite belonging to the IVA group. The average thickness of kamacite lamellae is 0.22 mm, ranking it as fine octahedrite (Of). The mineral composition is simple, the most abundant minerals being iron (kamacite) (5.16–7.36 wt. % Ni) followed by taenite (16.73–33.93 wt. % Ni). Troilite nodules and daubrĂ©elite inclusions and thin veinlets are rare. The WidmanstĂ€tten pattern is uniform across the meteorite and plessite structure is developed locally. Analyses of cosmogenic radionuclides (14C and 26Al) indicate that the radius of the Smolenice meteorite could be 30±10 cm and its terrestrial age 11±2 kyr

    Certified reference material IAEA-418: 129I in Mediterranean Sea water

    Get PDF
    A certified reference material designed for the determination of 129I in seawater, IAEA-418 (Mediterranean Sea water) is described and the results of certification are presented. The median of 129I concentration with 95% confidence interval was chosen as the most reliable estimates of the true value. The median, given as the certified value, is 2.28 × 108 atom L−1 (95% confidence interval is (2.16–2.73) 108 atom L−1), or 3.19 × 10−7 Bq L−1 (95% confidence interval is (3.02–3.82) × 10−7 Bq L−1). The material is intended to be used for standardization procedures applied in accelerator mass spectrometric laboratories. It is available in 1 L units and may be ordered via IAEA web side (www.iaea.org).The IAEA is grateful for the support provided to its Marine Environment Laboratories by the Government of the Principality of Monaco. PPP acknowledges a support provided by the EU Research & Development Operational Program funded by the ERDF (project No. 26240220004).Peer reviewe

    New Analytical Technologies for New Science

    No full text
    Recent developments in ultra low-level radionuclide analyses using radiometrics and mass spectrometry methods, which have had important impacts on new applications of radionuclides as tracers of environmental processes are discussed

    Temporal changes of 137Cs concentrations in the Far Eastern Seas: partitioning of 137Cs between overlying waters and sediments

    No full text
    Abstract Deep-ocean sediments, similarly to seawater, are important reservoirs of 137Cs, an anthropogenic radionuclide with a relatively long half-live found in the Earth system. To better understand the geochemical behaviour of 137Cs in the ocean, we examined the temporal changes of 137Cs activity concentrations in the overlying waters and in sediments from the Far Eastern Seas (Sea of Japan, SOJ, and Okhotsk Sea, OS) during the period of 1998–2021. The 137Cs activity levels showed exponential changes during the observed period. The decay-corrected change rates of 137Cs in deep waters of SOJ exhibited a slow increase, while 137Cs levels in seawater and sediment in OS decreased gradually. This reflects a topographical difference, as SOJ is a semi-closed sea, whereas OS receives continuously inflow of subarctic waters. It was confirmed that 137Cs released after the Fukushima Dai-ichi Nuclear Power Plant accident was rapidly transported into the deep waters of the SOJ. To elucidate the transfer processes of 137Cs from seawater to sediment, we discussed the temporal changes of the partition coefficients (Kd) of 137Cs between the overlying water and the surface sediment. In shallow areas ( 2500 m depth). The Kd values increased with increasing depth, which may reflect a pressure effect as a possible mechanism. These findings suggest that chemical processes may be important factors controlling the transport of 137Cs between seawater and sediment, although more complicated phenomena occurred in deep waters and sediments of the SOJ (> 3000 m depth)

    Investigation of neutron interactions with Ge detectors

    No full text
    Interactions of neutrons with a high-purity germanium detector were studied experimentally and by simulations using the GEANT4 tool. Elastic and inelastic scattering of fast neutrons as well as neutron capture on Ge nuclei were observed. Peaks induced by inelastic scattering of neutrons on 70^{70}Ge, 72^{72}Ge, 73^{73}Ge, 74^{74}Ge and 76^{76}Ge were well visible in the Îł\gamma-ray spectra. In addition, peaks due to inelastic scattering of neutrons on copper and lead nuclei, including the well-known peak of 208^{208}Pb at 2614.51 keV, were detected. The GEANT4 simulations showed that the simulated spectrum was in a good agreement with the experimental one. Differences between the simulated and the measured spectra were due to the high Îł\gamma-ray intensity of the used neutron source, physics implemented in GEANT4 and contamination of the neutron source
    corecore