115 research outputs found
Prognostic Impacts of Hypoxic Markers in Soft Tissue Sarcoma
Background. We aimed to explore the prognostic impact of the hypoxia-induced factors (HIFαs) 1 and 2, the metabolic HIF-regulated glucose transporter GLUT-1, and carbonic anhydrase IX (CAIX) in non-gastrointestinal stromal tumor soft tissue sarcomas (non-GIST STS).
Methods. Duplicate cores with viable tumor tissue from 206 patients with non-GIST STS were obtained and tissue microarrays were constructed. Immunohistochemistry (IHC) was used to evaluate expression of hypoxic markers.
Results. In univariate analyses, GLUT-1 (P < 0.001) and HIF-2α (P = 0.032) expression correlated significantly with a poor disease-specific survival (DSS). In the multivariate analysis, however, only high expression of GLUT-1 (HR 1.7, CI 95% 1.1–2.7, P = 0.021) was a significant independent prognostic indicator of poor DSS.
Conclusion. GLUT-1 is a significant independent negative prognostic factor in non-GIST STS
HIF mediated and DNA damage independent histone H2AX phosphorylation in chronic hypoxia
The histone variant 2AX (H2AX) is phosphorylated at Serine 139 by the PI3K-like kinase family members ATM, ATR and DNA-PK. Genotoxic stress, such as tumor radio- and chemotherapy, is considered to be the main inducer of phosphorylated H2AX (γH2AX), which forms distinct foci at sites of DNA damage where DNA repair factors accumulate. γH2AX accumulation under severe hypoxic/anoxic (0.02% oxygen) conditions has recently been reported to follow replication fork stalling in the absence of detectable DNA damage. In this study, we found HIF-dependent accumulation of γH2AX in several cancer cell lines and mouse embryonic fibroblasts exposed to physiologically relevant chronic hypoxia (0.2% oxygen), which did not induce detectable levels of DNA strand breaks. The hypoxic accumulation of γH2AX was delayed by the RNAi-mediated knockdown of HIF-1α or HIF-2α and further decreased when both HIF-αs were absent. Conversely, basal phosphorylation of H2AX was increased in cells with constitutively stabilized HIF-2α. These results suggest that both HIF-1 and HIF-2 are involved in γH2AX accumulation by tumor hypoxia, which might increase a cancer cell's capacity to repair DNA damage, contributing to tumor therapy resistanc
Raf-1 Activation Prevents Caspase 9 Processing Downstream of Apoptosome Formation
In many cell types, growth factor removal induces the release of cytochrome-c from mitochondria that leads to activation of caspase-9 in the apoptosome complex. Here, we show that sustained stimulation of the Raf-1/MAPK1,3 pathway prevents caspase-9 activation induced by serum depletion in CCL39/ΔRaf-1:ER fibroblasts. The protective effect mediated by Raf-1 is sensitive to MEK inhibition that is sufficient to induce caspase-9 cleavage in exponentially growing cells. Raf-1 activation does not inhibit the release of cytochrome-c from mitochondria while preventing caspase-9 activation. Gel filtration chromatography analysis of apoptosome formation in cells shows that Raf-1/MAPK1,3 activation does not interfere with APAF-1 oligomerization and recruitment of caspase 9. Raf-1-mediated caspase-9 inhibition is sensitive to emetine, indicating that the protective mechanism requires protein synthesis. However, the Raf/MAPK1,3 pathway does not regulate XIAP. Taken together, these results indicate that the Raf-1/MAPK1,3 pathway controls an apoptosis regulator that prevents caspase-9 activation in the apoptosome complex
The Oxidative Function of Diferric Transferrin
There is evidence for an unexpected role of diferric transferrin as a terminal oxidase for the transplasma membrane oxidation of cytosolic NADH. In the original studies which showed the reduction of iron in transferrin by the plasma membranes NADH oxidase, the possible role of the reduction on iron uptake was emphasized. The rapid reoxidation of transferrin iron under aerobic conditions precludes a role for surface reduction at neutral pH for release of iron for uptake at the plasma membrane. The stimulation of cytosolic NADH oxidation by diferric transferrin indicates that the transferrin can act as a terminal oxidase for the transplasma membrane NADH oxidase or can bind to a site which activates the oxidase. Since plasma membrane NADH oxidases clearly play a role in cell signaling, the relation of ferric transferrin stimulation of NADH oxidase to cell control should be considered, especially in relation to the growth promotion by transferrin not related to iron uptake. The oxidase can also contribute to control of cytosolic NAD concentration, and thereby can activate sirtuins for control of ageing and growth
Interleukin 1 and tumour necrosis factor increase phosphorylation of fibroblast proteins
AbstractInterleukin 1 (IL1) or tumour necrosis factor (TNF) stimulated phosphorylation of a triad of 27 kDa phosphoproteins (pI 6.0, 5.7 and 5.5) in human dermal fibroblasts. The change was dependent on the dose of cytokine in the range 0.1–20 ng, was detectable between 3 and 5 min after stimulation and was maximal by 10 min. The proteins were found in the cytosol after subcellular fractionation. The 32P was removed from them by alkali, indicating the presence of phosphoserine and/or phosphothreonine. The results suggest that early changes in serine/threonine protein kinase activity may be involved in responses of fibroblasts to IL1 and TNF
Specific activation of ERK pathways by chitin oligosaccharides in embryonic zebrafish cell lines
Animal science
ERK5 Contributes to VEGF Alteration in Diabetic Retinopathy
Diabetic retinopathy is one of the most common causes of blindness in North America. Several signaling mechanisms are activated secondary to hyperglycemia in diabetes, leading to activation of vasoactive factors. We investigated a novel pathway, namely extracellular signal regulated kinase 5 (ERK5) mediated signaling, in modulating glucose-induced vascular endothelial growth factor (VEGF) expression.
Human microvascular endothelial cells (HMVEC) were exposed to glucose. In parallel, retinal tissues from streptozotocin-induced diabetic rats were examined after 4 months of follow-up. In HMVECs, glucose caused initial activation followed by deactivation of ERK5 and its downstream mediators myocyte enhancing factor 2C (MEF2C) and Kruppel-like factor 2 (KLF2) mRNA expression. ERK5 inactivation further led to augmented VEGF mRNA expression. Furthermore, siRNA mediated ERK5 gene knockdown suppressed MEF2C and KLF2 expression and increased VEGF expression and angiogenesis. On the other hand, constitutively active MEK5, an activator of ERK5, increased ERK5 activation and ERK5 and KLF2 mRNA expression and attenuated basal- and glucose-induced VEGF mRNA expression. In the retina of diabetic rats, depletion of ERK5, KLF2 and upregulation of VEGF mRNA were demonstrated.
These results indicated that ERK5 depletion contributes to glucose induced increased VEGF production and angiogenesis. Hence, ERK5 may be a putative therapeutic target to modulate VEGF expression in diabetic retinopathy
The metabolically-modulated stem cell niche: a dynamic scenario regulating cancer cell phenotype and resistance to therapy.
This Perspective addresses the interactions of cancer stem cells (CSC) with environment which result in the modulation of CSC metabolism, and thereby of CSC phenotype and resistance to therapy. We considered first as a model disease chronic myeloid leukemia (CML), which is triggered by a well-identified oncogenetic protein (BCR/Abl) and brilliantly treated with tyrosine kinase inhibitors (TKi). However, TKi are extremely effective in inducing remission of disease, but unable, in most cases, to prevent relapse. We demonstrated that the interference with cell metabolism (oxygen/glucose shortage) enriches cells exhibiting the leukemia stem cell (LSC) phenotype and, at the same time, suppresses BCR/Abl protein expression. These LSC are therefore refractory to the TKi Imatinib-mesylate, pointing to cell metabolism as an important factor controlling the onset of TKi-resistant minimal residual disease (MRD) of CML and the related relapse. Studies of solid neoplasias brought another player into the control of MRD, low tissue pH, which often parallels cancer growth and progression. Thus, a 3-party scenario emerged for the regulation of CSC/LSC maintenance, MRD induction and disease relapse: the “hypoxic” versus the “ischemic” vs. the “acidic” environment. As these environments are unlikely constrained within rigid borders, we named this model the “metabolically-modulated stem cell niche.
- …