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   Abstract:   The histone variant 2AX (H2AX) is phosphorylated 

at Serine 139 by the PI3K-like kinase family members ATM, 

ATR and DNA-PK. Genotoxic stress, such as tumor radio- 

and chemotherapy, is considered to be the main inducer of 

phosphorylated H2AX ( γ H2AX), which forms distinct foci at 

sites of DNA damage where DNA repair factors accumulate. 

 γ H2AX accumulation under severe hypoxic/anoxic (0.02 %  

oxygen) conditions has recently been reported to follow 

replication fork stalling in the absence of detectable DNA 

damage. In this study, we found HIF-dependent accumula-

tion of  γ H2AX in several cancer cell lines and mouse embry-

onic fibroblasts exposed to physiologically relevant chronic 

hypoxia (0.2 %  oxygen), which did not induce detectable 

levels of DNA strand breaks. The hypoxic accumulation of 

 γ H2AX was delayed by the RNAi-mediated knockdown of 

HIF-1 α  or HIF-2 α  and further decreased when both HIF- α s 

were absent. Conversely, basal phosphorylation of H2AX 

was increased in cells with constitutively stabilized HIF-2 α . 

These results suggest that both HIF-1 and HIF-2 are involved 

in  γ H2AX accumulation by tumor hypoxia, which might 

increase a cancer cell ’ s capacity to repair DNA damage, 

contributing to tumor therapy resistance.  

   Keywords:    DNA damage response;   oxygen sensing;   tumor 

hypoxia.  

   a   These authors contributed equally to this work.  

 *Corresponding author:   Roland H.   Wenger,      Institute of Physiology 

and Z ü rich Center for Integrative Human Physiology (ZIHP) , 

 University of Z ü rich, Winterthurerstrasse 190, CH-8057 Z ü rich , 

 Switzerland  , e-mail:  roland.wenger@access.uzh.ch    

  Simon   Wrann,     Muriel R.   Kaufmann,     Renato   Wirthner and     Daniel P. 
  Stiehl:      Institute of Physiology and Z ü rich Center for Integrative 

Human Physiology (ZIHP) ,  University of Z ü rich, Winterthurerstrasse 

190, CH-8057 Z ü rich ,  Switzerland      

  Introduction: tumor hypoxia and 
therapy resistance 
 Hypoxia is a common feature of solid tumors and develops 

due to inadequate vascularization, tortuous blood vessels 

and high oxygen consumption. Transient blockage of red 

blood cell flux, alternating with rapid alleviation, leads to 

frequent periodical hypoxia/ischemia, followed by reoxy-

genation (Yasui et al. , 2010 ). Reoxygenation, most likely 

mediated by the generation of reactive oxygen species 

(ROS), but not hypoxia can lead to detectable DNA damage 

(Hammond et  al. , 2003a,b ). Hypoxia is strongly assoc-

iated with malignant progression, metastatic outgrowth, 

genetic instability, resistance to radio-and chemotherapy 

and overall poor patient prognosis in various tumor types 

(Brown , 1998 ; Brown and William , 2004 ; Pouyss  é gur 

et al., 2006 ). Therefore, a thorough understanding of the 

molecular pathways in the hypoxic tumor microenviron-

ment is warranted to develop new strategies for efficient 

cancer therapy. 

 Central to the cellular response to hypoxia is the 

hetero dimeric hypoxia-inducible transcription factor HIF, 

consisting of one of three oxygen-labile  α  subunits and a 

common constitutive  β  subunit (Wenger , 2002 ;  Schofield 

and Ratcliffe , 2004 ). HIF activates a large number of 

oxygen-regulated genes required for the adaptation of 

normal cells to hypoxia (Wenger et al. , 2005 ). In tumors, 

HIF-1 is responsible for the generation of new blood 

vessels through transcriptional regulation of the vascu-

lar endothelial growth factor (VEGF), for pH regulation 

by increasing the expression of carbonic anhydrase (CA) 

IX and for the aerobically increased glycolytic capacity of 

cancer cells, also known as the Warburg effect (Seagroves 

et al. , 2001 ; Minchenko et al. , 2002 ; Svastova et al. , 2004 ). 

Furthermore, hypoxic tumor cells are able to maintain 

metabolic functions without an adequate oxygen supply 

via a switch to anaerobic fermentation (the Pasteur 

effect), which is facilitated in a HIF-1 dependent manner 

(Schroeder et al. , 2005 ). Therefore, high HIF-1 levels in the 

hypoxic tumor microenvironment is a well-established 

factor for aggressive tumor growth and a negative factor 

for cancer therapy (Ryan et al. , 1998  , 2000 ; Hopfl et al. , 

2002 ; Unruh et al. , 2003 ). 

 Besides tumor hypoxia, which leads to HIF- α  protein 

stabilization, the loss of tumor suppressor proteins, such 

as pVHL, p53 or PTEN, or oncogenes, such as v-src, can 

contribute to high HIF- α  levels in cancer cells (Jiang et al. , 
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1997 ; Krieg et  al. , 2000 ; Ravi et  al. , 2000 ; Zundel et  al. , 

2000 ). Both HIF-1 α  and HIF-2 α  are widely overexpressed 

in many human cancers and are frequently associated 

with malignancy and a poor prognosis (Birner et al. , 2000 ; 

Aebersold et al. , 2001 ). Furthermore, high HIF-1 α  protein 

levels have been shown to correlate with incomplete 

responses to chemotherapy and radiotherapy (Aebersold 

et al. , 2001 ; Koukourakis et al. , 2002 ; Bachtiary et al. , 2003 ; 

Generali et al. , 2006 ). Hypoxia  per se  affects radiation sen-

sitivity as the radiation-induced DNA damage is dependent 

on oxygen (Gray et  al. , 1953 ). In addition, decreased cell 

proliferation and lower drug concentrations in the hypoxic 

tumor areas contribute to the resistance to chemotherapy. 

However, the underlying molecular mechanisms causing 

therapy resistance of hypoxic tumor cells are incompletely 

understood, but it is likely that HIF downstream targets are 

directly involved in these processes.  

  Targeting HIF to improve cancer 
therapy 
 HIF-1-dependent hypoxic induction of the multidrug-

resistance MDR1 gene was one of the first described 

molecular mechanisms explaining the involvement of 

HIF-1 in chemotherapy resistance in various tumor cells, 

including breast carcinoma, gastric cancer, colon cancer 

and glioma (Comerford et  al. , 2002 ; Wartenberg et  al. , 

2003 ; Zhou et al. , 2005 ; Nardinocchi et al. , 2009 ). Hypoxi-

cally dysregulated apoptosis in response to chemotherapy 

might be another explanation (Erler et al. , 2004 ; Sermeus 

et al. , 2008 ). The role of HIF-1 in the regulation of apop-

tosis is very complex and context specific. The involve-

ment of HIF-1 in apoptosis in certain cell types cannot 

be generalized as cells do not undergo apoptosis under 

degrees of hypoxia sufficient for HIF-1 induction (Wenger 

et  al. , 1998 ). In primary cells, hypoxia typically leads to 

cell-cycle arrest and HIF-1-dependent apoptosis in cases of 

more severe conditions (Greijer and van der Wall , 2004 ). 

However, HIF-1 functions as a robust suppressor of apopto-

sis in most transformed cells. We previously reported that 

transformed mouse embryonic fibroblasts (MEFs) were 

more sensitive to chemotherapy as well as to radiotherapy 

in the absence of HIF-1 α  due to an impaired DNA double-

strand break (DSB) repair capacity (Wirthner et al. , 2008 ). 

The underlying molecular mechanism involves markedly 

reduced expression of DNA-PKcs, Ku80 and Ku70, three 

members of the DNA-dependent protein kinases (DNA-

PK), in HIF-1 α -deficient MEFs. Our data were supported 

by a large number of studies that demonstrated reversal of 

radio- and chemoresistance by targeting HIF-1 α  in various 

tumor types (Zhang et  al. , 2004 ; Moeller et  al. , 2005 ; 

 Williams et al. , 2005 ; Brown et al. , 2006 ; Li et al. , 2006a,b ; 

Song et  al. , 2006 ; Sasabe et  al. , 2007 ). For example, Li 

et al.  (2006a,b)  showed that the knockdown of HIF-1 α  in 

breast carcinoma cells repressed G 
0
 /G 

1
 -phase accumula-

tion and relieved S-phase block, thereby increasing sen-

sitivity to chemotherapy and attenuating tumor growth 

(Li et al. , 2006a,b ). Functional interference with HIF-1 α  in 

various tumor cells has been shown to result in enhanced 

cell death upon treatment with chemotherapeutic agents 

(Ricker et  al. , 2004 ; Peng et  al. , 2006 ; Hao et  al. , 2008 ; 

Sermeus et  al. , 2008 ; Flamant et  al. , 2010 ). However, 

experimentally increasing HIF-1 α  enhanced therapy 

resistance (Ji et al. , 2006 ; Martinive et al. , 2006 ). Of note, 

HIF-1 in germ cells of  Ceanorhabditis elegans  has recently 

been reported to antagonize p53-mediated apoptosis due 

to DNA damage (Sendoel et al. , 2010 ). 

 The induction of DNA damage by cytotoxic agents 

has proved to be an effective strategy for cancer therapy 

(Einhorn , 2002 ; Agarwal and Kaye , 2003 ; Pires et al. , 2012 ). 

Mutations in DNA damage response (DDR) genes can lead 

to increased frequency and incorrect DNA damage repair, 

thereby contributing to the genomic instability character-

istic for cancer cells (Bolderson et al. , 2009 ). Because HIF-

1-mediated therapy resistance was only observed when 

DSB, but not single-strand break (SSB)-inducing, agents 

were applied, we suspect that HIF-1 might be involved spe-

cifically in DNA-DSB repair (Unruh et al. , 2003 ).  

  The DNA damage response 
in hypoxia 
 Upon DNA damage, histone H2AX is rapidly phospho-

rylated at Serine 139 by ataxia-teleangiectasia-mutated 

(ATM) kinase, ATM- and Rad3-related (ATR) kinase and 

DNA-PK (Fernandez -Capetillo et  al., 2004 ; Zhang et  al. , 

2006 ; Hurley and Bunz , 2007 ). Previous studies have 

suggested that severe hypoxia can elicit a DNA damage-

like response, implying the activation of the ATR and 

ATM pathways and subsequent phosphorylation of H2AX 

(Hammond et al. , 2003a,b ; Bencokova et al. , 2009 ). More 

recently,  Economopoulou et  al.  (2009)  identified a novel 

role for histone H2AX in hypoxia triggered angiogenesis. 

Replication specific  γ H2AX was found to be induced in 

an ATR-dependent manner in endothelial cells exposed 

to milder hypoxia (1 %  O 
2
 ). Whether HIF is involved in the 

hypoxic induction of  γ H2AX has not been analyzed so far. 

Therefore, we investigated a potential role for HIF-1 and 
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HIF-2 in the phosphorylation of H2AX under chronically 

hypoxic (0.2 %   O 
2
 ) conditions. Hypoxic  γ H2AX induction 

was observed in a range of cancer cell lines, was delayed 

in HIF-1 α -deficient MEFs and, after HIF-1 α  and HIF-2 α  

knockdown in Hek293 cells, was further decreased when 

both HIFs were downregulated.  Vice versa , in 786-0 cells, 

devoid of pVHL and constitutively expressing HIF-2 α , H2AX 

phosphorylation was increased and could be reversed by 

pVHL reconstitution. These results suggest that HIF plays 

a crucial role in the DNA damage response under hypoxia.  

  Results 

   γ H2AX accumulation in chronic hypoxia 

 Hammond et al. previously reported that severe hypoxia/

anoxia (0.02 %  O 
2
 ) leads to ATR-dependent  γ H2AX accu-

mulation that was attributed to S-phase arrest (Hammond 

et  al. , 2002, 2003a,b ). Because an atmospheric oxygen 

concentration of 0.02 %  O 
2
  results in a tissue partial pres-

sure of oxygen that is most likely below the threshold for 

mitochondrial respiration, we investigated  γ H2AX induc-

tion under physiologically relevant hypoxic conditions. To 

ensure unimpaired mitochondrial respiration, an atmos-

pheric oxygen concentration of 0.2 %  O 
2
  was chosen, cor-

responding to an oxygen partial pressure of approximately 

1.5 mm Hg. Ischemia-like conditions and reoxygenation-

induced ROS formation followed by DNA damage was 

prevented by replacing the cell culture medium every 24 h 

with pre-equilibrated medium and by harvesting the cells 

inside of a hypoxic workstation. Several cancer cell lines 

were exposed to 0.2 %  O 
2
  for 3 – 72 h, followed by analysis of 

H2AX Serine 139 phosphorylation by immunoblotting. 

As shown in Figure  1  A,  γ H2AX accumulated in a time- 

dependent manner in all six cell lines and reached maximal 

induction after 24 – 48 h of hypoxic exposure, depending 

on the cell line. Hypoxic  γ H2AX induction in wild-type 

HEK293 cells with normal p53 was similar to SV40 large T 

antigen immortalized HEK293T cells, suggesting that p53 is 

not involved in hypoxic H2AX phosphorylation. Only wild-

type HEK293 cells were used for subsequent experiments. 

 We next compared  γ H2AX accumulation in hypoxia with 

the effects of the topoisomerase II inhibitor and DSB induc-

ing agent etoposide (Burden and Osheroff , 1998 ).  γ H2AX 

slowly accumulated in hypoxia, reaching a maximum after 

48 – 72 h, and declined after 96 h (Figure 1B). Treatment for 1 h 

with etoposide in concentrations from 0.25 to 8  μ  m  resulted 

in a similar, dose-dependent increase in  γ H2AX levels. Total 

H2AX levels remained unaffected after both hypoxic expo-

sure and etoposide treatment (Figure 1B).  

  Hypoxic  γ H2AX accumulation is HIF 
dependent 

 The involvement of HIF in hypoxic H2AX phosphorylation 

was investigated by shRNA-mediated stable knockdown 

of HIF-1 α  and/or HIF-2 α  in HEK293 cells. Hypoxic  γ H2AX 

accumulation was delayed after shRNA-mediated knock-

down of either HIF-1 α  or HIF-2 α , with maximal levels only 

after 72 h compared to 24 – 48 h in the parental control 

(Figure  2  A). Total H2AX remained unaffected (Figure 2A). 

Concomitant HIF-1 α  and HIF-2 α  double knockdowns sub-

stantially decreased hypoxic phosphorylation of H2AX at 

all time points (Figure 2B). 

A B

(h)

(h)

(h) Etoposide (μM)

 Figure 1    Phosphorylation of H2AX in chronic hypoxia. 

 (A) The indicated cancer cell lines were cultured under 20 %  or 0.2 %  O 
2
  conditions for up to 72 h, and  γ H2AX protein levels were analyzed by 

immunoblotting.  β -Actin served as a control for equal loading and blotting. (B) HEK293 cells were exposed to 20 %  or 0.2 %  O 
2
  for up to 96 h 

or to various etoposide concentrations up to 8  μ  m  for 1 h in normoxia. Phosphorylated and total H2AX were analyzed by immunoblotting.    
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 To corroborate these findings, two different MEF cell 

lines derived from two different HIF-1 α  knockout mouse 

strains were analyzed. These cell lines were either only 

immortalized by SV40 large T (MEF- Hif1a  -/- T) or immor-

talized and transformed by H- ras  (MEF- Hif1a  -/-  r T), 

respectively (Feldser et  al. , 1999 ; Ryan et  al. , 2000 ). 

Importantly, these MEF cell lines were shown to lack 

functional HIF-2 α  protein (Park et al. , 2003 ). Confirming 

the results obtained with HEK293 cells,  γ H2AX levels in 

wt MEFs accumulated after 24 h exposure to 0.2 %  O 
2
  but 

were strongly impaired in MEFs devoid of HIF-1 α . Total 

histone levels remained unaffected, as shown by Ponceau 

S-staining of the extracted histone fraction (Figure 2C). 

We previously reported increased susceptibility to DNA 

damage with enhanced phosphorylation of H2AX in MEF-

 Hif1a  -/-  r T upon low dose (0.5 – 4  μ  m ) etoposide treatment 

(h)

(h)

(h)

(h)

Etoposide (8 μM)

Parental Parental

Parental Parental Parental Parental

 Figure 2    HIFs are required for hypoxic  γ H2AX accumulation. 

 (A, B) Parental, shRNA-mediated HIF-1 α  or HIF-2 α  knockdown (shHIF1A or shHIF2A, respectively) or HIF-1 α /HIF-2 α  double knockdown 

(shH1A/H2A) HEK293 cells were grown under 20 %  or 0.2 %  O 
2
  conditions for the indicated time points. Phosphorylated and total H2AX was 

analyzed by immunoblotting, and  β -actin served as a control for equal loading and blotting. (C) MEF- Hif1a   + / +  rT, MEF- Hif1a  -/- rT, MEF- Hif1a   + / +  T, 

MEF- Hif1a  -/- T were exposed to 20 %  or 0.2 %  O 
2
  for 4 or 24 h or treated with 8  μ  m  etoposide for 1 h. Ponceau S staining was used as a control 

for equal extraction and loading of histones. (D) Parental and HIF-1 α /HIF-2 α  double knockdown (shH1A/H2A) HEK293 cells were grown 

under 20 %  or 0.2 %  O 
2
  conditions for the time points indicated before  γ H2AX levels were analyzed by FACS.  γ H2AX positive cells were gated 

as indicated by the rectangles and quantified relative to the total cell number. (E) 786-0 and 786-0-pVHL cells were grown under 20 %  or 

0.2 %  O 
2
  conditions for 24 – 72 h, and  γ H2AX and  β -actin protein levels were analyzed by immunoblotting.    
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(Wirthner et  al. , 2008 ). However, the HIF dependent 

differ ence of  γ H2AX levels decreased with higher doses 

of etoposide and was invisible upon treatment with 8  μ  m  

(Wirthner et  al. , 2008 ). In line with these findings, no 

HIF-1 α -dependent changes in  γ H2AX induction could be 

observed after high-dose (8  μ  m ) etoposide treatment, 

which resulted in  γ H2AX levels that were only slightly 

higher than the  γ H2AX levels in HIF-1 α  positive MEFs after 

24 h of hypoxia (Figure 2C). 

 To further confirm the role of HIF in hypoxic  γ H2AX 

accumulation, parental and HIF-1 α /HIF-2 α  double knock-

down HEK293 cells were grown under 20 %  or 0.2 %  O 
2
  

conditions for up to 72 h before  γ H2AX levels were quanti-

fied by FACS analysis. Whereas 88 %  of parental cells were 

strongly  γ H2AX positive after 48 and 72 h of hypoxia, only 

20 – 24 %  of the HIF-1 α /HIF-2 α  double knockdown HEKs 

showed similarly elevated  γ H2AX staining (Figure 2D). 

 Finally, VHL-deficient 786-0 cells, containing con-

stitutively stabilized HIF-2 α  (Maxwell et  al. , 1999 ) and 

reconstituted 786-0-pVHL cells were cultured under 20 %  

or 0.2 %  O 
2
  conditions for 4 – 72 h and analyzed by immuno-

blotting. In line with our findings above, both basal and 

hypoxic levels of  γ H2AX were substantially higher in 786-0 

cells compared to 786-0-pVHL cells (Figure 2E).  

  Hypoxic  γ H2AX accumulation is independent 
of DNA-DSB formation 

 Hypoxia has previously been suggested to induce genetic 

instability associated with increased HIF-1 α  levels (Bristow 
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 Figure 3    Hypoxia does not induce detectable DNA strand breaks. 

 (A) Representative example of a comet assay. DNA fragmentation in wild-type MEFs was induced by exposure to 1  μ  m  etoposide for 1 h. DNA 

was stained with SYBR green, and all images were acquired with fixed exposure times. (B) DNA fragmentation was  quantified by  determining 

the median tail moment of at least 150 comets per condition using CometScore software. Data are shown as mean values  ±  SEM. (top panel) 

Hypoxic induction of H2AX phosphorylation was confirmed by immunoblotting of parallel samples performed as in Figure 2C (bottom panel).    

and Hill , 2008 ). However, the previously published lack of 

detectable DNA damage at 0.02 %  O 
2
  suggests that hypoxic 

 γ H2AX accumulation might be partially or fully independ-

ent of DNA-DSB formation (Hammond et al. , 2003a,b ). To 

directly assess DNA-SSB and DNA-DSB formation under 

0.2 %  O 
2
  conditions, we performed alkaline single-cell 

electrophoresis (comet assays) in wild-type and HIF-1 α -

deficient MEFs and concomitantly determined  γ H2AX 

protein levels by immunoblotting. As shown in Figure  3  A, 

the emergence of DNA-DSB induced by 1  μ  m  etoposide 

could be visualized reliably by  ‘ comet halo ’  formation. 

Quantification of the median of the tail moment demon-

strated a significant ( p   <  0.0001) four-fold increase follow-

ing treatment with 1  μ  m  etoposide for 1 h, but not after up 

to 24 h of 0.2 %  O 
2
  (Figure 3B, upper panel). In contrast, 

 γ H2AX levels in HIF-1 α  wild-type MEFs were even higher 

after 12 and 24 h of hypoxia than following treatment with 

1  μ  m  etoposide (Figure 3B, lower panel). Taken together, 

these data suggest that DNA-DSB is not a major determi-

nant of hypoxic  γ H2AX induction.   

  Discussion 
 Hypoxic regions in solid tumors result from an imbal-

ance between cellular oxygen consumption and oxygen 

delivery as a consequence of inefficient tumor vascula-

ture and limited oxygen diffusion (Chitneni et al. , 2011 ). 

Rapid and frequent variations in red blood cell flux cause 

temporal and spatial variations in the degree of hypoxia 
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within the same tumor. We found that chronic hypoxia 

triggers the phosphorylation of the histone variant 2AX 

in a HIF-dependent manner. In line with previous reports 

(Hammond et al. , 2003a,b ), we showed that  γ H2AX levels 

after chronic hypoxia were comparable with etoposide 

treatment. Hypoxia (0.2 %  O 
2
 ) did not lead to detectable 

DNA damage when analyzed by alkaline single cell elec-

trophoresis. Furthermore, proliferation and cell viability 

were not altered, even after long-term (3 days) hypoxic 

exposure (data not shown). However, conditions close to 

anoxia have been reported to have direct cytotoxic effects 

and elicit apoptosis (Papandreou et al. , 2005 ). In line with 

our previous findings (Wirthner et al. , 2008 ), 53BP1 dose 

dependently accumulated in distinct nuclear foci upon 

treatment with etoposide and partially overlapped with 

 γ H2AX staining (data not shown). These foci are most 

likely sites of DNA-DSBs. In contrast, in chronic hypoxia, 

 γ H2AX did not accumulate in nuclear foci but showed a 

more diffuse pattern throughout the nucleus (data not 

shown). A similar granular  γ H2AX and ATM phospho-

S1981 staining has been reported previously to occur in 

response to severe hypoxia (0.02 %  O 
2
 ) (Hammond et al. , 

2003a,b ; Bencokova et al. , 2009 ). Hammond et al. found 

that severe hypoxia leads to replication fork stalling and 

ATR-dependent  γ H2AX accumulation during S-phase 

(Hammond et al. , 2002, 2003a,b ). Moreover, diffuse and 

pan-nuclear  γ H2AX staining has been found to occur 

upon non-ionizing UV-C irradiation, independent of 

DNA-DSBs (Marti et al. , 2006 ). Infection with inactivated 

adeno-associated virus has been shown to lead to repli-

cation fork stalling and a diffuse  γ H2AX nuclear staining, 

which is essential for subsequent cell-cycle arrest in the 

absence of DNA damage (Fragkos et al. , 2009 ). However, 

the mechanism behind this diffuse  γ H2AX distribution 

pattern as well as its functional relevance are currently 

unknown. 

 DNA-DSBs are serious lesions that can lead to genomic 

instability if improperly repaired, or ultimately to cell death 

if the repair machinery is saturated. It is essential that the 

cell closely monitors such stress conditions and initiates 

signals for an adequate response. Phosphorylation of 

H2AX on serine 139 is established as a sensitive marker 

for DNA-DSBs (Bonner et  al. , 2008 ).  γ H2AX is regarded 

as a key component for DNA repair, even though it seems 

dispensable for the initial recognition of DNA-DSBs, and 

H2AX-deficient mice are viable (Celeste et al. , 2002, 2003 ). 

 The physiologic relevance of hypoxia-induced  γ H2AX 

is poorly understood. A recent report showed that hypoxia 

triggered neovascularization required endothelial H2AX, 

and  γ H2AX was induced in an ATR-dependent manner in 

moderate hypoxia due to replicative stress (Economopoulou 

et  al. , 2009 ). Genetic inactivation of H2AX was sufficient 

to suppress tumor angiogenesis and growth in xenograft 

models. However, this study did not address the question 

of whether HIFs are involved in this effect. In the present 

work, we were able to show that HIF is an integral factor 

required for efficient phosphorylation of H2AX under phy-

siologically relevant hypoxic conditions, and that hypoxic 

 γ H2AX induction was delayed in the absence of HIF- α . We 

previously reported that DNA-PK expression was strongly 

reduced by the absence of HIF-1 α  under both normoxic and 

hypoxic conditions (Wirthner et al. , 2008 ), raising the pos-

sibility that DNA-PK might be the responsible kinase for 

H2AX phosporylation in chronic hypoxia. In line with this 

hypothesis, accumulation of DNA-PKcs, Ku70 and Ku80 

following hypoxia and iron chelation have been demon-

strated in a number of different cell lines (Ginis and Faller , 

2000 ; Lynch et al. , 2001 ; Um et al. , 2004 ; Bouquet et al. , 

2011 ). DNA-PK has been shown to phosphorylate H2AX in 

different cell lines and  in vivo  in response to DNA damage 

(Stiff et al. , 2004 ; Koike et al. , 2008 ; An et al. , 2010 ) under 

hypertonic conditions (Reitsema et  al. , 2005 ) and during 

apoptotic DNA fragmentation (Mukherjee et al. , 2006 ). Of 

note, the hypoxic DNA-PK activation resulted in increased 

HIF-dependent gene expression (Bouquet et  al. , 2011 ). 

These data suggest that DNA-PK might be both upstream 

and downstream of HIF. 

 In summary, our data indicate a novel DNA-DSB inde-

pendent mechanism by which HIF downstream effec-

tors might be involved in histone H2AX phosphorylation 

during hypoxia and, hence, could contribute to therapy 

resistance of hypoxic cancer cells.  

  Materials and methods 

  Cell culture and lentiviral transduction 
 All cell lines were cultured in high glucose Dulbecco ’ s modifi ed 

Eagle ’ s medium (DMEM; Sigma, Buchs, Switzerland) as described 

previously (Stiehl et al. , 2006 ). For chronic hypoxic exposure, cells 

were grown in a gas-controlled glove box to handle the cells under 

constant oxygen (InvivO 
2
  400, Ruskinn Technologies, Leeds, UK). 

Before medium change, all reagents were pre-equilibrated to the 

0.2 %  O 
2
 -containing gas mixture inside the glove box. Cell number, 

size and viability were determined by trypan blue exclusion using 

an automatic cell analyzer (Vi-Cell, Beckman-Coulter, Nyon, Swit-

zerland). Stable knockdown of HIF-1 α  and HIF-2 α  in HEK293 cells 

by RNA interference was achieved by lentiviral transduction of 

short hairpin (shRNA) constructs. Viral particles were produced in 

HEK293T human enbryonic kidney cells using the ViraPower lenti-

viral expression system according to the manufacturer ’ s protocol 

(Invitrogen, Basel, Switzerland) as described previously (Stiehl 

et al., 2012).  
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  Immunoblot analysis 
 Histone immunoblotting was performed as described previously 

(Wirthner et al. , 2008 ). Primary antibodies used were  γ H2AX (Milli-

pore, Zug, Switzerland), total H2AX (Millipore), and  β -actin (Sigma, 

Buchs, Switzerland). Horseraddish-peroxidase-coupled secondary 

anti-mouse and anti-rabbit antibodies were purchased from Pierce 

(Lausanne, Switzerland). Chemiluminescence detection was per-

formed using Supersignal West Dura (Pierce), and signals were re-

corded and quantifi ed using a charge-coupled device camera (Lighti-

mager LAS-4000mini, Fujufi lm, Dielsdorf, Switzerland). Extracted 

histones were stained with Ponceau S (Sigma).  

  Flow cytometry 
 Single cell suspensions were incubated with an antibody against 

 γ H2AX and propidium iodide (PI) according to the manufacturer ’ s 

instructions. Stained cells were analyzed with a FACSCanto II utiliz-

ing FACSDiva soft ware (BD Biosciences, Allschwil, Switzerland).  

  Single cell electrophoresis (comet assays) 
 Alkaline single cell electrophoresis was performed as described 

 before (Wirthner et al. , 2008 ). Briefl y, MEFs were mixed with 0.5 %  

low-melting-point agarose (Sigma), solidifi ed on microscopy slides 

and lysed with 1 %  Triton-X100, 2.5  m  NaCl, 100 m m  EDTA, 10 m m  

 Tris-HCl (pH 10.0) for 1 h at 4 ° C in the absence of light. Horizontal 

electrophoresis ( ∼ 0.74 V/cm; 300 mA) was performed in 300 m m  

NaOH, 1 m m  EDTA for 30 min. Following SYBR green (Invitrogen) 

staining, DNA migration was visualized by fl uorescence microscopy, 

and the tail moment ( % DNA in the tail multiplied by the tail length) 

was calculated from   >  150 cells per condition using the CometScore 

soft ware package (TriTek, Sumerduck, VA, USA). Quantifi cation of 

the median tail moments is shown as mean values   ±   standard error 

of the mean (SEM). Statistical analysis was performed applying two-

tailed Student ’ s t - test using GraphPad Prism version 4.0 (GraphPad 

Soft ware, Ja Jolla, CA, USA).    
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