76 research outputs found

    In vivo localization at the cellular level of stilbene fluorescence induced by Plasmopara viticola in grapevine leaves

    Get PDF
    Accurate localization of phytoalexins is a key for better understanding their role. This work aims to localize stilbenes, the main phytoalexins of grapevine. The cellular localization of stilbene fluorescence induced by Plasmopara viticola, the agent of downy mildew, was determined in grapevine leaves of very susceptible, susceptible, and partially resistant genotypes during infection. Laser scanning confocal microscopy and microspectrofluorimetry were used to acquire UV-excited autofluorescence three-dimensional images and spectra of grapevine leaves 5–6 days after inoculation. This noninvasive technique of investigation in vivo was completed with in vitro spectrofluorimetric studies on pure stilbenes as their fluorescence is largely affected by the physicochemical environment in various leaf compartments. Viscosity was the major physicochemical factor influencing stilbene fluorescence intensity, modifying fluorescence yield by more than two orders of magnitude. Striking differences in the localization of stilbene fluorescence induced by P. viticola were observed between the different genotypes. All inoculated genotypes displayed stilbene fluorescence in cell walls of guard cells and periclinal cell walls of epidermal cells. Higher fluorescence intensity was observed in guard-cell walls than in any other compartment due to increased local viscosity. In addition stilbene fluorescence was found in epidermal cell vacuoles of the susceptible genotype and in the infected spongy parenchyma of the partially resistant genotype. The very susceptible genotype was devoid of fluorescence both in the epidermal vacuoles and the mesophyll. This strongly suggests that the resistance of grapevine leaves to P. viticola is correlated with the pattern of localization of induced stilbenes in host tissues

    Antioxidant activity relationship of phenolic compounds in Hypericum perforatum L.

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The St John's Wort (<it>Hypericum perforatum</it>; Clusiaceae) has been used in traditional and modern medicine for a long time due to its high content of biologically active phenolics. The purpose of this work was to develop a method for their fractionation and identification, and to determine the most active antioxidant compounds in plant extract.</p> <p>Results</p> <p>An LC-MS method which enables fast qualitative and semiquantitative analysis was developed. The composition determined is in agreement with the previous results, where 6 flavonoids, 4 naphthodianthrones and 4 phloroglucinols have been identified. Significant antioxidant activity was determined for most of the fractions by DPPH assay (the lowest IC<sub>50 </sub>of 0.52 ÎŒg/ml), NO scavenging (6.11 ÎŒg/ml), superoxide scavenging (1.86 ÎŒg/ml), lipid peroxidation (0.0079 ÎŒg/ml) and FRAP (the highest reduction capacity of 104 mg Fe equivalents/g) assays.</p> <p>Conclusion</p> <p>LC-MS technique has been successfully applied for a quick separation and identification of the major components of <it>H. perforatum </it>fractions. Majority of the fractions analyzed have expressed a very high antioxidative activity when compared to synthetic antioxidants. The antioxidant activity could be attributed to flavonoids and phenolic acids, while phloroglucinols and naphthodianthrones showed no significant activity. It is demonstrated that it is possible to obtain, by fractionation, <it>H. perforatum </it>preparations with significantly increased phloroglucinols-to-naphthodianthrones ratio (up to 95:5).</p

    The effect of nutrients on pyrrolizidine alkaloids in Senecio plants and their interactions with herbivores and pathogens

    Get PDF
    The aim of this review is to combine the knowledge of studies on effects of nutrients on pyrrolizidine alkaloids (PAs) in Senecio with those studies of effects of PAs on herbivores and pathogens in order to predict the effects that nutrients may have on herbivores and pathogens via changes in PAs. We discuss whether these predictions match with the outcome of studies where the effect of nutrients on herbivores and insects were measured. PA concentrations in S. jacobaea, S. vulgaris and S. aquaticus were mostly reduced by NPK fertilization, with genotype-specific effects occurring. Plant organs varied in their response to increased fertilization; PA concentrations in flowers remained constant, while shoot and roots were mostly negatively affected. Biomass change is probably largely responsible for the change in concentrations. Nutrients affect both the variety and the levels of PAs in the plant. The reduced PA concentrations after NPK fertilization was expected to benefit herbivores, but no or negative responses from insect herbivores were observed. Apparently other changes in the plant after fertilization are overriding the effect of PAs. Pathogens do seem to benefit from the lower PA concentrations after fertilization; they were more detrimental to fertilized plants than to unfertilized control plants. Future studies should include the effect of each element of nutrients separately and in combinations in order to gain more insight in the effect of specific nutrients on PA content in Senecio plants

    Hypericins as Potential Leads for New Therapeutics

    Get PDF
    70 years have passed since the first isolation of the naphthodianthrones hypericin and pseudohypericin from Hypericum perforatum L. Today, they continue to be one of the most promising group of polyphenols, as they fascinate with their physical, chemical and important biological properties which derive from their unique chemical structure. Hypericins and their derivatives have been extensively studied mainly for their antitumor, antiviral and antidepressant properties. Notably, hypericin is one of the most potent naturally occurring photodynamic agents. It is able to generate the superoxide anion and a high quantum yield of singlet oxygen that are considered to be primarily responsible for its biological effects. The prooxidant photodynamic properties of hypericin have been exploited for the photodynamic therapy of cancer (PDT), as hypericin, in combination with light, very effectively induces apoptosis and/or necrosis of cancer cells. The mechanism by which these activities are expressed continues to be a main topic of discussion, but according to scientific data, different modes of action (generation of ROS & singlet oxygen species, antiangiogenesis, immune responces) and multiple molecular pathways (intrinsic/extrinsic apoptotic pathway, ERK inhibition) possibly interrelating are implicated. The aim of this review is to analyse the most recent advances (from 2005 and thereof) in the chemistry and biological activities (in vitro and in vivo) of the pure naphthodianthrones, hypericin and pseudohypericin from H. perforatum. Extracts from H. perforatum were not considered, nor pharmakokinetic or clinical data. Computerised literature searches were performed using the Medline (PubMed), ChemSciFinder and Scirus Library databases. No language restrictions were imposed

    Hypericum sp.: essential oil composition and biological activities

    Get PDF
    Phytochemical composition of Hypericum genus has been investigated for many years. In the recent past, studies on the essential oils (EO) of this genus have been progressing and many of them have reported interesting biological activities. Variations in the EO composition of Hypericum species influenced by seasonal variation, geographic distribution, phenological cycle and type of the organ in which EO are produced and/or accumulated have also been reported. Although many reviews attributed to the characterization as well as biological activities of H. perforatum crude extracts have been published, no review has been published on the EO composition and biological activities of Hypericum species until recently (Crockett in Nat Prod Commun 5(9):1493–1506, 2010; Bertoli et al. in Global Sci Books 5:29–47, 2011). In this article, we summarize and update information regarding the composition and biological activities of Hypericum species EO. Based on experimental work carried out in our laboratory we also mention possible biotechnology approaches envisaging EO improvement of some species of the genus.Fundação para a CiĂȘncia e a Tecnologia (FCT) - project PTDC/AGR AAM/70418/2006, SFRH/BD/ 13283/2003

    Agronomical and chemical variability of Colchicum autumnale accessions

    No full text
    Poutaraud, A. and Girardin, P. 2006. Agronomical and chemical variability of Colchicum autumnale accessions. Can. J. Plant Sci. 86: 547-555. Meadow saffron (Colchicum autumnale) is an undomesticated plant from whose seeds the alkaloids colchicine and colchicoside are extracted and used pharmaceutically. Research was conducted towards domesticating meadow saffron in which inter-and intra-genetic variability of accessions was studied. Colchicine, 3-demethylcolchicine and colchicoside were assayed in plants of six accessions collected from natural sites in eastern France. These were cultivated at two sites and studied during 1 or 2 yr. Plants from 70 initial transplanted corms of one accession were studied individually for 4 yr to determined intra-accession variability and, as spontaneous vegetative multiplication of corms occurred, comparisons among plants from one initial transplanted corm were also made. For the main characteristics, seed dry weight (SDW) per plant, alkaloid content and colchicine:colchicoside ratio, the inter-accession variability was lower than the intra-accession variability. The results suggest that vegetative propagation of selected genotypes could improve alkaloid content by about 80% and improve SDW per plant by about 300%. Poutaraud, A. et Girardin, P. 2006. VariabilitĂ© gĂ©nĂ©tique du colchique d'automne. Can. J. Plant Sci. 86: 547-555. Le colchique (Colchicum autumnale) est une plante Ă  alcaloĂŻdes non domestiquĂ©e. La colchicine et le colchicoside extraits des graines sont utilisĂ©s dans plusieurs mĂ©dicaments. Un programme de recherche a Ă©tĂ© dĂ©veloppĂ© pour domestiquer cette plante et produire des graines pour l'industrie pharmaceutique. La variabilitĂ© inter et intra origine(s) de caractĂšres agronomiques et chimiques a Ă©tĂ© Ă©tudiĂ©e. La colchicine, la 3-demethylcolchicine et le colchicoside ont Ă©tĂ© dosĂ©s en chromatographie en phase liquide. Six origines ont Ă©tĂ© prĂ©levĂ©es sur des sites naturels de l'Est de la France et cultivĂ©es sur deux sites pendant un ou deux ans. Des plantes provenant de soixante dix cormus repiquĂ©s ont Ă©tĂ© Ă©tudiĂ©es individuellement pendant quatre ans en vue d'Ă©valuer la variabilitĂ© intra origine. Du fait de la multiplication vĂ©gĂ©tative spontanĂ©e de certains cormus, une comparaison entre plusieurs plantes issues d'un cormus a Ă©tĂ© possible. La variabilitĂ© inter origines Ă©tait moins Ă©levĂ©e que la variabilitĂ© intra origine pour les principaux caractĂšres Ă©tudiĂ©s. La multiplication vĂ©gĂ©tative des gĂ©notypes sĂ©lectionnĂ©s pourrait amĂ©liorer la teneur en alcaloĂŻdes d'environ 80% et le rendement en poids sec de graines par plante de 300%. Des recherches sur la micropropagation de cette plante doivent ĂȘtre entreprises afin de cultiver des gĂ©notypes Ă  haut potentiel

    Amélioration des teneurs et rendements en dérivés coumariniques et en coumarine libre du mélilot (Melilotus officinalis L. ; Fabaceae)

    No full text
    Annexes 47 p. DiplĂŽme : Dr. d'UniversitĂ©This work is included in a research programme concerning the quality improvement of medicinal plants. A general approach was elaborated with the aim of increasing the active substance content and / or yield and implies different approaches: genetical, agronomical and technological. Sweetclover (Melilotus officinalis L.) is a Leguminous officinal fodder plant used by the pharmaceutical industry. Its extract is a component of several antiphlebitic remedies. The published pharmacological studies concern free coumarin. This molecule has anti-oedematous properties and is used for chronic venous insufficiency. Free coumarin is not present in fresh Melilot but exists as a glucoside of the hydroxyl-cinnamic acid (GOHCA), trans and cis, in vacuoles, in particular in leaves. The GOHCA trans is isomerised under UV light into GOHCA cis and could be hydrolysed into free coumarin by a specific and inter-cellular ß-glucosidase. This reaction occurs during disruption of the tissue. We call “coumarin derivatives” the sum of the two glucosides, expressed as free coumarin. The practical goal of this study is to produce Melilot with a high coumarin derivative content and optimize the transformation of these glucosides into free coumarin during harvest and post-transformation stages to produce dry matter with 0.7% free coumarin. The average content in free coumarin in the drug used by the pharmaceutical industry arises only 0.3%. The scientific goal is to determine the factors involved in the regulation of the synthesis of sweetclover coumarin derivative and in their transformation into free coumarin. The first step of this work was to try to understand and control the mechanisms involved in the formation of free coumarin during the post-harvest transformation (drying, extraction) and to adapt techniques to optimize these reactions. Extraction and assay methods by liquid chromatography were performed. A study of the inter- and intra-origin variability for the characters “coumarin derivative content” and “coumarin derivative yield” allows the selection of interesting populations and genotypes. A technique of micropropagation was studied and applied to work with clones. The second part of this work consisted in the explanation of the mechanism involved in the synthesis and the storage of coumarin derivative in the plant. In the literature only older, often in contradictions works are available. In our experiment, we showed that the higher coumarin derivative contents appeared in the young and physiologically active organs, such as buds and leaves. They may contain up to 3% of these molecules. The lamina with their high photosynthetic activity showed the highest level of coumarin derivative in the vegetative plant. Experimentation during two years, on harvested clones, showed that: for a given genotype, the coumarin derivative level is determined by the age of the plant and is independent from its weight ; the organs of the lower parts of the plant always contain less coumarin derivatives than the upper parts ; the coumarin derivative level is independent from nitrogen content ; the plant density in the field has no effect on the coumarin derivative level but interferes with the dry matter yield and therefore on the coumarin derivative yield ; the translocation of the coumarin derivatives from the root to the leaves takes place at the end of the first year of cultivation ; the coumarin derivative synthesis is linked both to the light intensity and composition. The third part of this work concerns the determination of a crop management that would produce 0.7% free coumarin in the dry matter. So, we emphasized the production of young organs by having early and multiple cuts. Some sweetclover with high coumarin derivative content (above 1%) were obtained by the improvement of the quality of the plant material through agricultural techniques. The GOHCA cis could be totally transformed into free coumarin by the optimization of harvesting techniques and the transformation of fresh material (drying and extraction conditions). It was possible to control the production of Melilot with more than 0.7% of free coumarin. The results obtained here validate the present research approach, which could be applied to the improvement of content, and yield of other plants of pharmaceutical interest.Ce travail s'inscrit dans le cadre d'un programme de recherche sur l'amĂ©lioration de la qualitĂ© de plantes mĂ©dicinales. Une dĂ©marche gĂ©nĂ©rale a Ă©tĂ© Ă©laborĂ©e visant Ă  augmenter la teneur et/ou le rendement en principes actifs et fait intervenir plusieurs voies de recherche : gĂ©nĂ©tique, agronomique et technologique. Le mĂ©lilot (Melilotus officinalis L.) est une LĂ©gumineuse fourragĂšre, utilisĂ©e comme matiĂšre premiĂšre par l'industrie pharmaceutique. Ses extraits entrent dans la composition de mĂ©dicaments Ă  visĂ©e veinotonique. L'ensemble des Ă©tudes pharmacologiques publiĂ©es dans la littĂ©rature concerne la coumarine libre, qui possĂšde des propriĂ©tĂ©s antiphlogistiques, antioedĂ©mateuses et qui est utilisĂ©e comme protecteur vasculaire. La coumarine libre n'existe pas dans le mĂ©lilot frais. Elle se trouve sous forme de glucosides d'acide ortho-hydroxy-cinnamique (GOHCA) trans et cis et localisĂ©s dans les vacuoles de la plante, principalement au niveau des feuilles. Le GOHCA trans est isomĂ©risĂ© en GOHCA cis sous l'action des U.V., puis hydrolysĂ© en coumarine libre par une ß-glucosidase inter-cellulaire spĂ©cifique, lors de la rupture des tissus de la plante. Nous entendons par dĂ©rivĂ©s coumariniques la somme des deux glucosides prĂ©cĂ©demment citĂ©s exprimĂ©e en coumarine. L'objectif appliquĂ© de ce travail est de produire du mĂ©lilot Ă  forte teneur en dĂ©rivĂ©s coumariniques, et de transformer au mieux ces glucosides en coumarine libre au cours de la rĂ©colte et des Ă©tapes de transformation ultĂ©rieures afin de produire du matĂ©riel vĂ©gĂ©tal Ă  0,7% de coumarine libre. En effet, la teneur moyenne en coumarine libre du mĂ©lilot utilisĂ© par l'industrie pharmaceutique n'est que de 0,3%. L'objectif scientifique est de dĂ©terminer les facteurs susceptibles d'intervenir Ă  la fois sur la synthĂšse des dĂ©rivĂ©s coumariniques du mĂ©lilot et sur leur transformation en coumarine libre. La premiĂšre partie de ce travail a permis de comprendre et de maĂźtriser les mĂ©canismes de formation de la coumarine libre durant les Ă©tapes de transformation postrĂ©colte (sĂ©chage, extraction). Une technique d'extraction et une mĂ©thode de dosage en chromatographie en phase liquide ont Ă©tĂ© adaptĂ©es. Une Ă©tude de la variabilitĂ© gĂ©nĂ©tique inter et intra origines concernant les caractĂšres teneurs et rendements en dĂ©rivĂ©s coumariniques a permis la sĂ©lection de populations et de gĂ©notypes performants. AprĂšs avoir mis au point une technique de micropropagation, nous avons pu travailler avec des clones. La seconde partie de ce travail a permis d'avancer dans la comprĂ©hension des mĂ©canismes de formation, de migration et de stockage des dĂ©rivĂ©s coumariniques dans la plante. Nous avons pu montrer que les teneurs les plus fortes en dĂ©rivĂ©s coumariniques apparaissent dans les organes jeunes et physiologiquement actifs, comme les bougeons et les feuilles. Ceux-ci peuvent en contenir jusqu'Ă  3%. Le limbe, tissu possĂ©dant une forte activitĂ© photosynthĂ©tique, prĂ©sente la plus importante teneur en dĂ©rivĂ©s coumariniques de la plante Ă  l'Ă©tat vĂ©gĂ©tatif. Nous avons Ă©galement mis en Ă©vidence que : pour un gĂ©notype donnĂ©, la teneur en dĂ©rivĂ©s coumariniques est liĂ©e Ă  l'Ăąge de la plante mais est indĂ©pendante de son poids ; les organes des niveaux infĂ©rieurs de la plante possĂšdent toujours une teneur en dĂ©rivĂ©s coumariniques plus faible que ceux des niveaux supĂ©rieurs ; la teneur en dĂ©rivĂ©s coumariniques est indĂ©pendante de la teneur en azote ; la densitĂ© des plantes en culture n'intervient pas sur la teneur en dĂ©rivĂ©s coumariniques alors qu'elle dĂ©termine de façon importante le rendement en matiĂšre sĂšche donc le rendement en dĂ©rivĂ©s coumariniques ; les dĂ©rivĂ©s coumariniques migrent des feuilles vers les racines en premiĂšre annĂ©e de culture ; la synthĂšse de dĂ©rivĂ©s coumariniques est dĂ©pendante Ă  la fois de la quantitĂ© et de la qualitĂ© de la lumiĂšre. La troisiĂšme partie de ce travail concerne la mise au point d'un "itinĂ©raire technique" visant Ă  atteindre l'objectif de 0,7% de coumarine libre dans le matĂ©riel vĂ©gĂ©tal sec. Aussi, nous sommes nous attachĂ©s Ă  produire des organes jeunes en procĂ©dant Ă  des rĂ©coltes prĂ©coces et multiples, effectuĂ©es sur une mĂȘme parcelle. Du mĂ©lilot Ă  forte teneur en dĂ©rivĂ©s coumariniques (plus de 1%) a Ă©tĂ© obtenu grĂące Ă  l'amĂ©lioration de la qualitĂ© du matĂ©riel vĂ©gĂ©tal produit par le biais des techniques culturales. Le GOHCA cis a pu ĂȘtre totalement transformĂ© en coumarine libre grĂące Ă  l'optimisation des techniques de rĂ©colte et de transformation du mĂ©lilot frais (conditions de sĂ©chage et d'extraction). La production de mĂ©lilot Ă  plus de 0,7% de coumarine libre est maĂźtrisĂ©e. Les rĂ©sultats obtenus, sur le mĂ©lilot, permettent ainsi de valider une dĂ©marche de recherche qui pourra ĂȘtre appliquĂ©e Ă  l'amĂ©lioration des teneurs et rendements en principes actifs d'autres plantes d'intĂ©rĂȘt pharmaceutique

    Amélioration des teneurs et rendements en dérivés coumariniques et en coumarine libre du mélilot (Melilotus officinalis L. ; Fabaceae)

    No full text
    Annexes 47 p. DiplĂŽme : Dr. d'UniversitĂ©This work is included in a research programme concerning the quality improvement of medicinal plants. A general approach was elaborated with the aim of increasing the active substance content and / or yield and implies different approaches: genetical, agronomical and technological. Sweetclover (Melilotus officinalis L.) is a Leguminous officinal fodder plant used by the pharmaceutical industry. Its extract is a component of several antiphlebitic remedies. The published pharmacological studies concern free coumarin. This molecule has anti-oedematous properties and is used for chronic venous insufficiency. Free coumarin is not present in fresh Melilot but exists as a glucoside of the hydroxyl-cinnamic acid (GOHCA), trans and cis, in vacuoles, in particular in leaves. The GOHCA trans is isomerised under UV light into GOHCA cis and could be hydrolysed into free coumarin by a specific and inter-cellular ß-glucosidase. This reaction occurs during disruption of the tissue. We call “coumarin derivatives” the sum of the two glucosides, expressed as free coumarin. The practical goal of this study is to produce Melilot with a high coumarin derivative content and optimize the transformation of these glucosides into free coumarin during harvest and post-transformation stages to produce dry matter with 0.7% free coumarin. The average content in free coumarin in the drug used by the pharmaceutical industry arises only 0.3%. The scientific goal is to determine the factors involved in the regulation of the synthesis of sweetclover coumarin derivative and in their transformation into free coumarin. The first step of this work was to try to understand and control the mechanisms involved in the formation of free coumarin during the post-harvest transformation (drying, extraction) and to adapt techniques to optimize these reactions. Extraction and assay methods by liquid chromatography were performed. A study of the inter- and intra-origin variability for the characters “coumarin derivative content” and “coumarin derivative yield” allows the selection of interesting populations and genotypes. A technique of micropropagation was studied and applied to work with clones. The second part of this work consisted in the explanation of the mechanism involved in the synthesis and the storage of coumarin derivative in the plant. In the literature only older, often in contradictions works are available. In our experiment, we showed that the higher coumarin derivative contents appeared in the young and physiologically active organs, such as buds and leaves. They may contain up to 3% of these molecules. The lamina with their high photosynthetic activity showed the highest level of coumarin derivative in the vegetative plant. Experimentation during two years, on harvested clones, showed that: for a given genotype, the coumarin derivative level is determined by the age of the plant and is independent from its weight ; the organs of the lower parts of the plant always contain less coumarin derivatives than the upper parts ; the coumarin derivative level is independent from nitrogen content ; the plant density in the field has no effect on the coumarin derivative level but interferes with the dry matter yield and therefore on the coumarin derivative yield ; the translocation of the coumarin derivatives from the root to the leaves takes place at the end of the first year of cultivation ; the coumarin derivative synthesis is linked both to the light intensity and composition. The third part of this work concerns the determination of a crop management that would produce 0.7% free coumarin in the dry matter. So, we emphasized the production of young organs by having early and multiple cuts. Some sweetclover with high coumarin derivative content (above 1%) were obtained by the improvement of the quality of the plant material through agricultural techniques. The GOHCA cis could be totally transformed into free coumarin by the optimization of harvesting techniques and the transformation of fresh material (drying and extraction conditions). It was possible to control the production of Melilot with more than 0.7% of free coumarin. The results obtained here validate the present research approach, which could be applied to the improvement of content, and yield of other plants of pharmaceutical interest.Ce travail s'inscrit dans le cadre d'un programme de recherche sur l'amĂ©lioration de la qualitĂ© de plantes mĂ©dicinales. Une dĂ©marche gĂ©nĂ©rale a Ă©tĂ© Ă©laborĂ©e visant Ă  augmenter la teneur et/ou le rendement en principes actifs et fait intervenir plusieurs voies de recherche : gĂ©nĂ©tique, agronomique et technologique. Le mĂ©lilot (Melilotus officinalis L.) est une LĂ©gumineuse fourragĂšre, utilisĂ©e comme matiĂšre premiĂšre par l'industrie pharmaceutique. Ses extraits entrent dans la composition de mĂ©dicaments Ă  visĂ©e veinotonique. L'ensemble des Ă©tudes pharmacologiques publiĂ©es dans la littĂ©rature concerne la coumarine libre, qui possĂšde des propriĂ©tĂ©s antiphlogistiques, antioedĂ©mateuses et qui est utilisĂ©e comme protecteur vasculaire. La coumarine libre n'existe pas dans le mĂ©lilot frais. Elle se trouve sous forme de glucosides d'acide ortho-hydroxy-cinnamique (GOHCA) trans et cis et localisĂ©s dans les vacuoles de la plante, principalement au niveau des feuilles. Le GOHCA trans est isomĂ©risĂ© en GOHCA cis sous l'action des U.V., puis hydrolysĂ© en coumarine libre par une ß-glucosidase inter-cellulaire spĂ©cifique, lors de la rupture des tissus de la plante. Nous entendons par dĂ©rivĂ©s coumariniques la somme des deux glucosides prĂ©cĂ©demment citĂ©s exprimĂ©e en coumarine. L'objectif appliquĂ© de ce travail est de produire du mĂ©lilot Ă  forte teneur en dĂ©rivĂ©s coumariniques, et de transformer au mieux ces glucosides en coumarine libre au cours de la rĂ©colte et des Ă©tapes de transformation ultĂ©rieures afin de produire du matĂ©riel vĂ©gĂ©tal Ă  0,7% de coumarine libre. En effet, la teneur moyenne en coumarine libre du mĂ©lilot utilisĂ© par l'industrie pharmaceutique n'est que de 0,3%. L'objectif scientifique est de dĂ©terminer les facteurs susceptibles d'intervenir Ă  la fois sur la synthĂšse des dĂ©rivĂ©s coumariniques du mĂ©lilot et sur leur transformation en coumarine libre. La premiĂšre partie de ce travail a permis de comprendre et de maĂźtriser les mĂ©canismes de formation de la coumarine libre durant les Ă©tapes de transformation postrĂ©colte (sĂ©chage, extraction). Une technique d'extraction et une mĂ©thode de dosage en chromatographie en phase liquide ont Ă©tĂ© adaptĂ©es. Une Ă©tude de la variabilitĂ© gĂ©nĂ©tique inter et intra origines concernant les caractĂšres teneurs et rendements en dĂ©rivĂ©s coumariniques a permis la sĂ©lection de populations et de gĂ©notypes performants. AprĂšs avoir mis au point une technique de micropropagation, nous avons pu travailler avec des clones. La seconde partie de ce travail a permis d'avancer dans la comprĂ©hension des mĂ©canismes de formation, de migration et de stockage des dĂ©rivĂ©s coumariniques dans la plante. Nous avons pu montrer que les teneurs les plus fortes en dĂ©rivĂ©s coumariniques apparaissent dans les organes jeunes et physiologiquement actifs, comme les bougeons et les feuilles. Ceux-ci peuvent en contenir jusqu'Ă  3%. Le limbe, tissu possĂ©dant une forte activitĂ© photosynthĂ©tique, prĂ©sente la plus importante teneur en dĂ©rivĂ©s coumariniques de la plante Ă  l'Ă©tat vĂ©gĂ©tatif. Nous avons Ă©galement mis en Ă©vidence que : pour un gĂ©notype donnĂ©, la teneur en dĂ©rivĂ©s coumariniques est liĂ©e Ă  l'Ăąge de la plante mais est indĂ©pendante de son poids ; les organes des niveaux infĂ©rieurs de la plante possĂšdent toujours une teneur en dĂ©rivĂ©s coumariniques plus faible que ceux des niveaux supĂ©rieurs ; la teneur en dĂ©rivĂ©s coumariniques est indĂ©pendante de la teneur en azote ; la densitĂ© des plantes en culture n'intervient pas sur la teneur en dĂ©rivĂ©s coumariniques alors qu'elle dĂ©termine de façon importante le rendement en matiĂšre sĂšche donc le rendement en dĂ©rivĂ©s coumariniques ; les dĂ©rivĂ©s coumariniques migrent des feuilles vers les racines en premiĂšre annĂ©e de culture ; la synthĂšse de dĂ©rivĂ©s coumariniques est dĂ©pendante Ă  la fois de la quantitĂ© et de la qualitĂ© de la lumiĂšre. La troisiĂšme partie de ce travail concerne la mise au point d'un "itinĂ©raire technique" visant Ă  atteindre l'objectif de 0,7% de coumarine libre dans le matĂ©riel vĂ©gĂ©tal sec. Aussi, nous sommes nous attachĂ©s Ă  produire des organes jeunes en procĂ©dant Ă  des rĂ©coltes prĂ©coces et multiples, effectuĂ©es sur une mĂȘme parcelle. Du mĂ©lilot Ă  forte teneur en dĂ©rivĂ©s coumariniques (plus de 1%) a Ă©tĂ© obtenu grĂące Ă  l'amĂ©lioration de la qualitĂ© du matĂ©riel vĂ©gĂ©tal produit par le biais des techniques culturales. Le GOHCA cis a pu ĂȘtre totalement transformĂ© en coumarine libre grĂące Ă  l'optimisation des techniques de rĂ©colte et de transformation du mĂ©lilot frais (conditions de sĂ©chage et d'extraction). La production de mĂ©lilot Ă  plus de 0,7% de coumarine libre est maĂźtrisĂ©e. Les rĂ©sultats obtenus, sur le mĂ©lilot, permettent ainsi de valider une dĂ©marche de recherche qui pourra ĂȘtre appliquĂ©e Ă  l'amĂ©lioration des teneurs et rendements en principes actifs d'autres plantes d'intĂ©rĂȘt pharmaceutique
    • 

    corecore