17 research outputs found

    Properties and suspension stability of dendronized iron oxide nanoparticles for MRI applications

    Get PDF
    Functionalized iron oxide nanoparticles have attracted an increasing interest in the last 10 years as contrast agents for MRI. One challenge is to obtain homogeneous and stable aqueous suspensions of iron oxide nanoparticles without aggregates. Iron oxide nanoparticles with sizes around 10 nm were synthesized by two methods: the particle size distribution in water suspension of iron oxide nanoparticles synthesized by the co-precipitation method was improved by a process involving two steps of ligand exchange and phase transfer and was compared with that of iron oxide nanoparticles synthesized by thermal decomposition and functionalized by the same dendritic molecule. The saturation magnetization of dendronized nanoparticles synthesized by thermal decomposition was lower than that of nanoparticles synthesized by co-precipitation. The r(2) relaxivity values were shown to decrease with the agglomeration state in suspension and high r(2) values and r(2)/r(1) ratios were obtained with nanoparticles synthesized by co-precipitation by comparison with those of commercial products. Dendronized iron oxide nanoparticles thus have potential properties as contrast agent. Copyright (C) 2010 John Wiley & Sons, Ltd

    Nanoparticles for imaging, sensing, and therapeutic intervention

    Get PDF
    Nanoparticles have the potential to contribute to new modalities in molecular imaging and sensing as well as in therapeutic interventions. In this Nano Focus article, we identify some of the current challenges and knowledge gaps that need to be confronted to accelerate the developments of various applications. Using specific examples, we journey from the characterization of these complex hybrid nanomaterials; continue with surface design and (bio)physicochemical properties, their fate in biological media and cells, and their potential for cancer treatment; and finally reflect on the role of animal models to predict their behavior in humans

    Optimization of a New ZnO Nanorods Hydrothermal Synthesis Method for Solid State Dye Sensitized Solar Cells Applications

    No full text
    We report on the growth control of zinc oxide nanorods to point out the effect of the ZnO nanorods quality on the power conversion efficiency (PCE) of transparent conductive oxide (TCO)/ZnO nanorods/dye/spiro-OMe-TAD/metal electrode photovoltaic devices. A promising PCE of 0.61% was measured for the best nanorods growth conditions. A careful control of all the growth parameters during the seeds layer deposition and the hydrothermal synthesis was necessary to reach such a high PCE for this kind of device. A regular nanorod layer with a flat upper surface was obtained for ethylenediamine to zinc acetate dihydrate molar ratio equal to 1.74 and a pH of 8.2. The growth was performed at 65 degrees C for 2 h to avoid zinc oxide brushes deposition on the surface, arising from zinc hydroxyacetate decomposition during the hydrothermal treatment. The effect of ZnO nanorods length (ranging from 1 to 3 mu m) on solar cell efficiency was tested. Although the UV-vis absorption increases when the nanorods length increases, the best photovoltaic parameters were measured for the shortest nanorods length studied (1 mu m)

    Double functionalization for the design of innovative craniofacial prostheses

    No full text
    International audienceTitanium (Ti) is the most commonly used material for cranial prostheses. However, this material does not exhibit the same mechanical properties as the bone. Incorporating polymers onto Ti by combining both their properties is a solution to overcome this issue. Thus, sandwich materials made of two Ti skin sheets and a poly(methyl methacrylate) (PMMA) core are promising structures to design biomedical prostheses. The "grafting to" and "grafting from" procedures to functionalize the Ti/PMMA interface are described in this paper as two strategies for chemically connecting PMMA chains on Ti surfaces. The advantage of the first approach is the capacity to control the architecture of the grafted PMMA on Ti. Moreover, a method for selectively grafting a bioactive polymer such as poly(sodium styrene sulfonate) (PNaSS) on one side of the Ti and PMMA on the other side is developed. This contribution presents efficient ways of functionalizing Ti for biomedical applications

    Nanoparticles for imaging, sensing, and therapeutic intervention

    No full text
    Nanoparticles have the potential to contribute to new modalities in molecular imaging and sensing as well as in therapeutic interventions. In this Nano Focus article, we identify some of the current challenges and knowledge gaps that need to be confronted to accelerate the developments of various applications. Using specific examples, we journey from the characterization of these complex hybrid nanomaterials; continue with surface design and (bio)physicochemical properties, their fate in biological media and cells, and their potential for cancer treatment; and finally reflect on the role of animal models to predict their behavior in humans

    pH-Controlled Microbubble Shell Formation and Stabilization

    No full text
    We report on microbubbles with a shell self-assembled from an anionic perfluoroalkylated surfactant, perfluorooctyl(ethyl)phosphate (F8H2Phos). Microbubbles were formed and effectively stabilized from aqueous solutions of F8H2Phos at pH 5.6-8.5. This range overlaps the domains of existence of the monosodic and disodic salts. The shell morphology of microbubbles formed spontaneously by heating aqueous solutions of F8H2Phos was monitored during cooling, directly on the microscope's stage. At pH 5.6, the shell collapses through nucleation of folds, as typical for insoluble surfactants. At pH 8.5, no folds 10 were seen during shrinking. At higher pH, the microbubbles rapidly adsorb on the glass. The effect of pH (from 5.6 to 9.7) on adsorption kinetics of F8H2Phos at the air/water interface, and on the elasticity of its Gibbs films, was determined. At low pH, F8H2Phos is highly surface active. The interfacial film undergoes a dilute-to-condensed phase transition and a dramatic increase of elastic module, leading to extremely high values (up to 500 mN m(-1)). At high pH, the surfactant's adsorption is quasi-instantaneous, but interfacial tension lowering is limited, leading to very low elastic module (similar to 5 mN m(-1)). At pH 5.6 and 8.5, the interfacial tension of F8H2Phos adsorbed on millimetric bubbles and compressed at a rate similar to that exerted on micrometric bubbles during deflation is lower than the equilibrium interfacial tension. Langmuir monolayers of F8H2Phos are highly stable at low pH and feature a liquid expanded/liquid condensed transition; at high pH, they do not withstand compression. Both mono- and disodic F8H2Phos salts are needed to effectively stabilize microbubbles: the rapidly adsorbed disodic salt stabilizes a newly created air/water interface; the more surface active monosodic salt then replaces the more water-soluble disodic salt at the interface. During deflation, the surfactant shell undergoes a transition toward a highly elastic phase, which further contributes to bubble stabilization

    Super-Elastic Air/Water Interfacial Films Self-Assembled from Soluble Surfactants

    No full text
    We show that water-soluble monosodic salts of F-alkyl phosphates CnF2n+1(CH2)(2)OP(O)(OH)(2), with n = 8 and 10 (F8H2Phos and F10H2Phos) form Gibbs films with exceptionally high dilational viscoelastic modules E that reach similar to 900 mN m(-1) in the condensed phases. These E values are up to one order of magnitude larger than those recorded for phospholipid, protein and polymer films commonly considered as highly viscoelastic. F8H2Phos.1Na undergoes a transition between a liquid-expanded and a liquid-condensed phase. In the case of F10H2Phos.1Na, a transition occurs between a gas phase of surface domains, in which the molecules are densely packed, and a liquid-condensed phase

    Size-dependent properties of magnetic iron oxide nanocrystals

    No full text
    The fine control of iron oxide nanocrystal sizes within the nanometre scale (diameters range from 2.5 to 14 nm) allows us to investigate accurately the size-dependence of their structural and magnetic properties. A study of the growth conditions of these nanocrystals obtained by thermal decomposition of an iron oleate precursor in high-boiling point solvents has been carried out. Both the type of solvent used and the ligand/precursor ratio have been systematically varied, and were found to be the key parameters to control the growth process. The lattice parameters of all the nanocrystals deduced from X-ray diffraction measurements are consistent with a structure of the type Fe(3-x)O(4), i.e. intermediate between magnetite and maghemite, which evolves toward the maghemite structure for the smallest sizes (x = 1/3). The evolution of the magnetic behavior with nanoparticle sizes emphasizes clearly the influence of the surface, especially on the saturation magnetization M(s) and the magneto-crystalline anisotropy K. Dipolar interactions and thermal dependence have been also taken into account in the study on the nanoscale size-effect of magnetic properties

    Stabilization of scandium rich spinel ferrite CoFe(2-x)Sc(x)O4 (x <= 1) in thin films

    No full text
    Scandium rich cobalt ferrites CoyFe3-x-yScxO4 with y-1 never obtained in bulk could be stabilized in pulsed laser deposited thin films. Scandium contents of up to x=1 are reached. The cell parameter increases versus x as awaited when considering the size of scandium. It is equal to 0.8620 nm for x=1, significantly higher than that of CoFe2O4 (0.8396 nm). The lattice mismatch between the MgO (100) substrate and the scandium-containing spinel leads to an increased roughness. Cobalt is displaced from the octahedral site by Sc and mainly occupies the tetrahedral sites for high x values
    corecore