302 research outputs found

    Study of Forces During Ultrasonic Vibration Assisted Grinding

    Get PDF
    AbstractRadial and tangential grinding forces were presented as four components connected with workpiece material microcutting and plastic deformation, and friction of cutting and abrasive grains (AGs) with the workpiece.The depth of abrasive grain penetration in the workpiece and the cutting width are determined with regard to ultrasonic vibrations (USV) amplitude and frequency. Summing up of the forces from single grains was conducted by using a multiple integral, provided that one of the integration limits is a function describing change of the depth of the AGs penetration in the workpiece material which depends on the USV parameters. Dependencies were obtained for calculation of all grinding force components at different vibration amplitudes and frequencies when various number of USV waves fits the contact arc of the grain and the workpiece.Experimental values of grinding forces turned out to be 10 – 15% lower than those when USV waves are not applied

    Structural models of genome-wide covariance identify multiple common dimensions in autism

    Get PDF
    Common genetic variation has been associated with multiple symptoms in Autism Spectrum Disorder (ASD). However, our knowledge of shared genetic factor structures contributing to this highly heterogeneous neurodevelopmental condition is limited. Here, we developed a structural equation modelling framework to directly model genome-wide covariance across core and non-core ASD phenotypes, studying autistic individuals of European descent using a case-only design. We identified three independent genetic factors most strongly linked to language/cognition, behaviour and motor development, respectively, when studying a population-representative sample (N=5,331). These analyses revealed novel associations. For example, developmental delay in acquiring personal-social skills was inversely related to language, while developmental motor delay was linked to self-injurious behaviour. We largely confirmed the three-factorial structure in independent ASD-simplex families (N=1,946), but uncovered simplex-specific genetic overlap between behaviour and language phenotypes. Thus, the common genetic architecture in ASD is multi-dimensional and contributes, in combination with ascertainment-specific patterns, to phenotypic heterogeneity

    ASD and schizophrenia show distinct developmental profiles in common genetic overlap with population-based social communication difficulties

    Get PDF
    Difficulties in social communication are part of the phenotypic overlap between autism spectrum disorders (ASD) and schizophrenia. Both conditions follow, however, distinct developmental patterns. Symptoms of ASD typically occur during early childhood, whereas most symptoms characteristic of schizophrenia do not appear before early adulthood. We investigated whether overlap in common genetic in fluences between these clinical conditions and impairments in social communication depends on the developmental stage of the assessed trait. Social communication difficulties were measured in typically-developing youth (Avon Longitudinal Study of Parents and Children,N⩽5553, longitudinal assessments at 8, 11, 14 and 17 years) using the Social Communication Disorder Checklist. Data on clinical ASD (PGC-ASD: 5305 cases, 5305 pseudo-controls; iPSYCH-ASD: 7783 cases, 11 359 controls) and schizophrenia (PGC-SCZ2: 34 241 cases, 45 604 controls, 1235 trios) were either obtained through the Psychiatric Genomics Consortium (PGC) or the Danish iPSYCH project. Overlap in genetic in fluences between ASD and social communication difficulties during development decreased with age, both in the PGC-ASD and the iPSYCH-ASD sample. Genetic overlap between schizophrenia and social communication difficulties, by contrast, persisted across age, as observed within two independent PGC-SCZ2 subsamples, and showed an increase in magnitude for traits assessed during later adolescence. ASD- and schizophrenia-related polygenic effects were unrelated to each other and changes in trait-disorder links reflect the heterogeneity of genetic factors in fluencing social communication difficulties during childhood versus later adolescence. Thus, both clinical ASD and schizophrenia share some genetic in fluences with impairments in social communication, but reveal distinct developmental profiles in their genetic links, consistent with the onset of clinical symptom

    Genome-wide association study of shared components of reading disability and language impairment

    Get PDF
    Written and verbal languages are neurobehavioral traits vital to the development of communication skills. Unfortunately, disorders involving these traits—specifically reading disability (RD) and language impairment (LI)—are common and prevent affected individuals from developing adequate communication skills, leaving them at risk for adverse academic, socioeconomic and psychiatric outcomes. Both RD and LI are complex traits that frequently co-occur, leading us to hypothesize that these disorders share genetic etiologies. To test this, we performed a genome-wide association study on individuals affected with both RD and LI in the Avon Longitudinal Study of Parents and Children. The strongest associations were seen with markers in ZNF385D (OR = 1.81, P = 5.45 × 10−7) and COL4A2 (OR = 1.71, P = 7.59 × 10−7). Markers within NDST4 showed the strongest associations with LI individually (OR = 1.827, P = 1.40 × 10−7). We replicated association of ZNF385D using receptive vocabulary measures in the Pediatric Imaging Neurocognitive Genetics study (P = 0.00245). We then used diffusion tensor imaging fiber tract volume data on 16 fiber tracts to examine the implications of replicated markers. ZNF385D was a predictor of overall fiber tract volumes in both hemispheres, as well as global brain volume. Here, we present evidence for ZNF385D as a candidate gene for RD and LI. The implication of transcription factor ZNF385D in RD and LI underscores the importance of transcriptional regulation in the development of higher order neurocognitive traits. Further study is necessary to discern target genes of ZNF385D and how it functions within neural development of fluent language

    Genome-wide association study of shared components of reading disability and language impairment

    No full text
    Written and verbal languages are neurobehavioral traits vital to the development of communication skills. Unfortunately, disorders involving these traits-specifically reading disability (RD) and language impairment (LI)-are common and prevent affected individuals from developing adequate communication skills, leaving them at risk for adverse academic, socioeconomic and psychiatric outcomes. Both RD and LI are complex traits that frequently co-occur, leading us to hypothesize that these disorders share genetic etiologies. To test this, we performed a genome-wide association study on individuals affected with both RD and LI in the Avon Longitudinal Study of Parents and Children. The strongest associations were seen with markers in ZNF385D (OR = 1.81, P = 5.45 × 10(-7) ) and COL4A2 (OR = 1.71, P = 7.59 × 10(-7) ). Markers within NDST4 showed the strongest associations with LI individually (OR = 1.827, P = 1.40 × 10(-7) ). We replicated association of ZNF385D using receptive vocabulary measures in the Pediatric Imaging Neurocognitive Genetics study (P = 0.00245). We then used diffusion tensor imaging fiber tract volume data on 16 fiber tracts to examine the implications of replicated markers. ZNF385D was a predictor of overall fiber tract volumes in both hemispheres, as well as global brain volume. Here, we present evidence for ZNF385D as a candidate gene for RD and LI. The implication of transcription factor ZNF385D in RD and LI underscores the importance of transcriptional regulation in the development of higher order neurocognitive traits. Further study is necessary to discern target genes of ZNF385D and how it functions within neural development of fluent language

    Genetic risk for autism spectrum disorders and neuropsychiatric variation in the general population

    Get PDF
    Almost all genetic risk factors for autism spectrum disorders (ASDs) can be found in the general population, but the effects of that risk are unclear in people not ascertained for neuropsychiatric symptoms. Using several large ASD consortia and population based resources, we find genetic links between ASDs and typical variation in social behavior and adaptive functioning. This finding is evidenced through both inherited and de novo variation, indicating that multiple types of genetic risk for ASDs influence a continuum of behavioral and developmental traits, the severe tail of which can result in an ASD or other neuropsychiatric disorder diagnosis. A continuum model should inform the design and interpretation of studies of neuropsychiatric disease biology
    • …
    corecore