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Abstract 24 

Common genetic variation has been associated with multiple symptoms in Autism 25 

Spectrum Disorder (ASD). However, our knowledge of shared genetic factor structures 26 

contributing to this highly heterogeneous neurodevelopmental condition is limited. Here, we 27 

developed a structural equation modelling framework to directly model genome-wide covariance 28 

across core and non-core ASD phenotypes, studying autistic individuals of European descent 29 

using a case-only design. We identified three independent genetic factors most strongly linked to 30 

language/cognition, behaviour and motor development, respectively, when studying a population-31 

representative sample (N=5,331). These analyses revealed novel associations. For example, 32 

developmental delay in acquiring personal-social skills was inversely related to language, while 33 

developmental motor delay was linked to self-injurious behaviour. We largely confirmed the three-34 

factorial structure in independent ASD-simplex families (N=1,946), but uncovered simplex-35 

specific genetic overlap between behaviour and language phenotypes. Thus, the common genetic 36 

architecture in ASD is multi-dimensional and contributes, in combination with ascertainment-37 

specific patterns, to phenotypic heterogeneity.  38 
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INTRODUCTION 39 

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with 40 

considerable phenotypic and genetic heterogeneity (1,2). Core phenotypes in ASD implicate 41 

difficulties in social interaction and communication, as well as restricted, repetitive behavioural 42 

patterns and sensory abnormalities (3). However, the phenotypic presentation is broad and 43 

variable. More than 70% of individuals with ASD are diagnosed with co-occurring conditions 44 

(henceforth referred to as ASD phenotypic spectrum) (4), and individuals differ in phenotypic 45 

presentation, especially cognitive functioning (2,4). At the genetic level, additive genetic effects 46 

of rare and common genetic factors contribute to ASD liability in a sex-specific manner (1,5–10). 47 

Common variation explains most genetic variance in ASD, accounting for 12 to 65% of liability 48 

(1,5,11). However, even common genetic variation is highly heterogenous in ASD (5,6,8), and 49 

differences in underlying shared genetic factors are only partially understood.  50 

Depending on an individual’s genetic architecture, common variants act through partially 51 

distinct aetiological mechanisms (6). For example, autistic individuals with intellectual disability 52 

(ID), compared to those without, carry a higher rate of contributing de novo variants (6) and show 53 

qualitative differences in their common genetic architecture (5). In addition, polygenic scores 54 

(PGS) for different disorders, aggregating common risk alleles, show distinct association profiles 55 

with phenotypic factor structures in groups comprising only autistic individuals (8,12). Thus, also 56 

common variation may present genetic factor structures linking phenotypic domains, although the 57 

number of factors and their nature is unknown. Furthermore, the genetic architecture of ASD is 58 

distinctly different in multiplex families with multiple affected family members, compared to 59 

simplex families with only one affected child (13). ASD liability in simplex families is considerably 60 

more often related to de novo mutations (11,14). Therefore, also common genetic factor 61 

structures may differ between exclusively simplex and population-representative ASD 62 

architectures, where latter contain both simplex and multiplex families. 63 

This study applies genetic-relationship-matrix (GRM) structural equation modelling (GRM-64 

SEM) techniques to identify and characterise shared genetic factor structures in autistic 65 

individuals from large ASD cohorts adopting a case-only design (Figure 1). GRM-SEM estimates 66 

multivariate common genetic architectures (15), as captured by GRMs derived from direct 67 

genotyping data (15,16), by directly fitting structural models to genetic and residual variation using 68 

a maximum likelihood (ML) approach (15). Consequently, models can be compared with and 69 

optimised against a saturated model, i.e. a model with a perfect fit (15). Here, we introduce a 70 
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data-driven version of GRM-SEM (Figure 1B) that minimises the computational burden of 71 

identifying the best-fitting multi-dimensional model. We predict the number of genetic factors and 72 

their structure from genetic trait covariance, as estimated with a saturated GRM-SEM model, 73 

using principal component analysis (PCA) and exploratory factor analysis (EFA) techniques. 74 

Given the estimated nature of these genetic data, conducted analyses are approximations only, 75 

henceforth referred to as genetic PCA and genetic EFA, respectively. We use genetic PCA and 76 

EFA information to identify a multi-dimensional GRM-SEM model by providing starting values and 77 

parameter constraints. 78 

We implement this data-driven modelling strategy into a multi-stage research design to 79 

examine the genetic architecture of ASD across a broad range of related phenotypes and 80 

comorbidities, studying the most well-characterised ASD cohorts to date. As part of discovery 81 

analyses, we investigate ASD core and non-core phenotypes for 5,331 European descent 82 

individuals with ASD from the Simons Foundation Powering Autism Research for Knowledge 83 

(SPARK) sample (17) (Supplementary Table 1, Supplementary Figure 1, Supplementary 84 

Methods 1). Recruited across the United States (US), SPARK is a population-representative ASD 85 

sample including individuals from simplex or multiplex families (17). We follow up our results on 86 

1,946 autistic individuals from simplex-only families of the Simons Simplex Collection (SSC) 87 

sample (18) (Supplementary Table 2, Supplementary Figure 2, Supplementary Methods 2). 88 

Here, we report and contrast comprehensive multivariate genetic models estimated in SPARK 89 

and the SSC, empowering new insights into the heterogeneous phenotypic spectrum of ASD 90 

across samples representing different ascertainment schemes. 91 

RESULTS 92 

Multi-dimensional genetic analyses in population-representative ASD 93 

A challenge in identifying the genetic architecture of ASD core and non-core phenotypes 94 

is the selection of measures for model building. We, therefore, conducted discovery analyses in 95 

the population-representative SPARK sample across multiple stages (Figure 1). During stage I, 96 

we screened for phenotypes that are likely to have some genetic contributions (h2
SNP, p≤0.1, 97 

Figure 2A), using Genomic Restricted Maximum Likelihood (GREML) embedded in GCTA 98 

software (19,20), to ensure the convergence of GRM-SEM models. Note that h2
SNP estimates in 99 

this study reflect phenotypic heterogeneity among autistic individuals that can be accounted for 100 
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by common genetic variation. We retained 17 phenotypes from an initial set of 47 phenotypes, 101 

disorders and developmental milestones (Figure 2A). Captured domains included 102 

language/cognition, general behaviour, developmental, motor and repetitive behavioural features. 103 

Social and affective phenotypes were not taken forward to the next stage of analysis due to a lack 104 

of evidence for h2
SNP (Supplementary Figure 3). Next, we screened for phenotype combinations 105 

that are possibly sharing common genetic variation (rg p≤0.1, Figure 2B) to enable the 106 

identification of overarching genetic factors.  107 

Within stage II, we selected phenotypic subsets that jointly captured estimated genetic 108 

correlations from stage I, based on an enumeration of phenotype combinations, with the aim to 109 

successively construct a comprehensive GRM-SEM model (Figure 2B, Supplementary Figure 110 

4, Supplementary Table 3, Supplementary Note 1). Building a model from smaller phenotypic 111 

subsets ensures the robustness of identified structures and reduces the computational burden. 112 

The most extensively genetically linked phenotypic subsets were related to language disorder 113 

(including developmental language disorder/delay, SDLD), language level (SLL) and age of crawling 114 

(SCRL), respectively (Figure 2B). To control for measurement collinearity that can affect model 115 

convergence, we searched, in addition, for genetically correlated scales within a questionnaire 116 

using uni-dimensional GRM-SEM (Supplementary Note 1, Supplementary Figure 5). Where 117 

item scales of the same instrument were genetically similar (GRM-SEM rg=1), we retained a single 118 

representative measure (or proxy) only (Figure 2B, Supplementary Note 1, Supplementary 119 

Figure 5).  120 

As part of stage III, we aimed to identify the best-fitting multi-dimensional GRM-SEM 121 

models for the selected phenotypic subsets and, eventually, a combined set of measures, SALL 122 

(Supplementary Note 2). For this, we fitted a series of GRM-SEM saturated (Cholesky) models, 123 

genetic PCA eigenvalue decompositions, genetic EFA models, and, finally, GRM-SEM multi-124 

dimensional and bi-factor models (Figure 1, Table 1, Supplementary Table 4, Methods, 125 

Supplementary Note 3). For the latter two model types, we adopted a hybrid Independent 126 

Pathway / Cholesky (IPC) design that has shown a superior fit in previous analyses (16), as the 127 

residual part of the data is always fitted to a saturated (Cholesky) model (Methods). 128 

For all phenotypic sets with unambiguously identified numbers of genetic factors (SDLD, 129 

SLL and SALL), genomic structures were predicted with genetic EFA. Here, we fitted orthogonal 130 

(varimax) genetic EFA throughout, given modest genetic factor correlations (Supplementary 131 

Note 2, Supplementary Tables 5-6). Based on the identified best-fitting GRM-SEM models for 132 
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SDLD and SLL (Table 1, Supplementary Table 4, Figure 3A-F, Supplementary Tables 7-8, 133 

Supplementary Figure 6-7), we, eventually, added phenotypes to a combined set SALL. To 134 

reduce the computational burden, we selected SDLD and SLL measures with both the most 135 

substantial factor (|𝜆|>0.3) and cross-factor loadings (|𝜆|>0.1), representing all phenotypic 136 

domains (Supplementary Table 3, Supplementary Note 2). For the SCRL subset, eigenvalue 137 

decomposition did not reveal an exact factor dimension (Supplementary Figure 8) and, 138 

therefore, the entire set was added to SALL (Supplementary Note 2). Once SALL building was 139 

completed, we repeated the modelling process as described above. 140 

For each modelled phenotype set, SDLD (Figure 3A-C, Supplementary Table 7, 141 

Supplementary Figure 6), SLL (Figure 3D-F, Supplementary Table 8, Supplementary Figure 142 

7) and SALL (Figure 3G-I, Supplementary Table 9, Supplementary Figure 9), a multi-143 

dimensional IPC model fitted the data best (Table 1, Supplementary Table 4), matching 144 

predicted eigenvalues. Model comparisons were based on Akaike and Bayesian information 145 

criteria (AIC and BIC), and likelihood ratio tests (LRTs), and the fit of all identified models was 146 

highly comparable to a saturated model (pLRT=1; Table 1, Supplementary Table 4). Across 147 

subsets (SDLD and SLL) and the combined set (SALL), we found stable genetic dimensions (Figure 148 

3, Supplementary Tables 7-8, Supplementary Figures 6-7,9, Supplementary Note 2) 149 

demonstrating the robustness of underlying genetic structures.  150 

The combined set (SALL), comprised two language phenotypes (language disorder, 151 

language level), oppositional defiant disorder (ODD) as a form of general behavioural problems, 152 

two developmental milestones (age of self-feeding, age of crawling), control during movement as 153 

a proxy for Developmental Coordination Disorder Questionnaire (DCDQ) motor scores and two 154 

Repetitive Behaviour Scale-Revised (RBSR) behaviour scores (self-injurious behaviour, 155 

sameness behaviour) (Figure 3H-I). A three-factor IPC model fitted the data best (Figure 3G-I, 156 

Table 1, Supplementary Table 4). The three identified factors captured most strongly language 157 

(Alang), developmental delay (Adev) and behavioural problems (Abeh) (Figure 3H, Supplementary 158 

Figure 9, Supplementary Table 9), consistent with SDLD and SLL models (Figure 3B,3E). To 159 

explore the factor structure, we focused on standardised genetic factor loadings with an 160 

explanatory value of |𝜆|≥0.3 (21), accounting for ~10% phenotypic or liability variation, as well as 161 

the factorial coheritability (f2
g), i.e. the fraction of h2

SNP that is explained by a factor.  162 

The first genetic factor captured better language performance, Alang (Figure 3H) and was 163 

most strongly related to better language level (λlang= 0.46, SE=0.08), lower liability to language 164 
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disorder (λlang=-0.35, SE=0.09) and earlier age of self-feeding (λlang=-0.38, SE=0.14). Across 165 

phenotypes, this factor accounted for at least half of the trait h2
SNP estimates (f2

g, 0.50-1.00, 166 

Supplementary Table 9). Notably, this factor also uncovered inverse correlations between 167 

children’s language ability (e.g. language level) and the age of self-feeding (GRM-SEM rg=-0.71, 168 

SE=0.25, Figure 4A, Supplementary Figure 9).  169 

The second genetic factor, Adev, reflecting developmental delay, captured a later age of 170 

crawling (λdev=0.47, SE=0.10), less motor control (DCDQ control during movement, λdev=-0.33, 171 

SE=0.13) and more RBSR self-injurious behaviour (λdev=0.36, SE=0.10), explaining a 172 

considerable proportion of genetic variance (f2
g=0.44-0.84, Supplementary Table 9). The third 173 

genetic factor, Abeh, was linked to behaviour problems, almost fully explaining the h2
SNP of each 174 

trait (f2
g=1), including RBSR sameness behaviour (λbeh=0.38, SE=0.12) and liability to ODD 175 

(λbeh=0.45, SE=0.09).  176 

Identified genetic factors largely matched corresponding phenotypic dimensions. Each 177 

phenotype had a single meaningful factor loading (|𝜆|>0.3) for one factor only (21). However, for 178 

liability to language disorder, cross-loadings (p<0.05) with all three factors were detected (λlang=-179 

0.35, SE=0.09; λdev=-0.20, SE=0.10; λbeh=-0.20, SE=0.10), indicating genetic heterogeneity. 180 

Given the broad phenotypic definition of developmental language delay and disorder, genetic 181 

links across independent genetic dimensions may arise due to multiple underlying conditions (22).  182 

Further heterogeneity in genetic links was uncovered for self-injurious behaviour. Despite 183 

overall stability in factor structures, RBSR self-injurious behaviour, depending on the studied 184 

context, was either genetically related to the language Alang factor (λlang=0.38, SE=0.10, Figure 185 

3E, SLL model) or the developmental-delay-related Adev factor loading (λdev=0.36, SE=0.10, Figure 186 

3H, SALL model). Genetic cross-loadings with two independent common dimensions suggest 187 

distinct genetic aetiologies (22), matching different forms of self-injurious behaviour in ASD. While 188 

some forms involve stereotyped and repetitive behaviour, co-morbid with ID (23), others show 189 

neurotypical patterns (24,25) that facilitate cognitive regulation such as the release of ‘high 190 

pressure’ emotions (24,25). In contrast, there was little evidence for genetic links of self-injurious 191 

behaviour with the behavioural-problem’s factor (Figure 3E,3H), matching previously reported 192 

distinct phenotypic factor structures (8). Thus, self-injurious actions may, at least partially, be 193 

aetiologically distinct from other forms of repetitive behaviour.  194 
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Next, we confirmed the independence of predicted genetic factors by conducting bi-factor 195 

models, each showing a similar fit (pLRT≥0.94, Table 1, Supplementary Figures 10-12). In 196 

addition, we corroborated predicted rg (Figure 4) and h2
SNP patterns (Supplementary Figure 13), 197 

derived from the best-fitting GRM-SEM model for the SALL set, through comparisons with 198 

corresponding GREML analyses. We observed consistent findings throughout, based on 95% 199 

CIs, demonstrating that genetic dimensions and structure of multivariate genetic architectures can 200 

be accurately predicted by genetic PCA and EFA analyses (Figure 3A,3D,3G), analogous to 201 

methodologies developed for summary statistics (26).  202 

Eventually, to enhance the interpretability of identified genetic structures, we mapped ASD 203 

subcategory information and PGS for educational attainment (EA) onto the model structure of the 204 

SALL model in SPARK, while preserving the model fit (Figure 3H versus Figure 5A,5D, 205 

Supplementary Table 4). ASD subcategory information (DSM-IV-based) can provide a clinical 206 

reference guiding the interpretation of identified cognitive genetic dimensions, here capturing 207 

genetic liability to Asperger, a form of autism without significant impairments in language and 208 

cognitive development (27). In contrast, PGSEA presents a genetic correlate of cognitive 209 

functioning (28), but also socio-economic status, including health and longevity (29). Here, once 210 

mapped, liability to Asperger was genetically linked to the language genetic factor (Figure 5A, 211 

λlang=0.36, SE=0.15). Genetic correlations between liability to Asperger and language level 212 

(Figure 5C, GRM-SEM rg=0.90, SE=0.19) were positive, consistent with the absence of language 213 

problems in this ASD subcategory (3). In contrast, PGSEA were inversely associated with the 214 

behavioural problem factor (Figure 5D, λbeh=-0.16, SE=0.06), conditional on the 215 

language/cognitive dimension. Consistently, genetic correlations of PGSEA with behavioural 216 

measures such as sameness behaviour were inverse (Figure 5F, GRM-SEM rg=-0.16, SE=0.06), 217 

strengthening support for previously reported links with repetitive behaviour (9). 218 

Note that low sample numbers and/or low h2
SNP of ASD liability prevented a more 219 

comprehensive modelling (Supplementary Figure 14).  220 

Multi-dimensional genetic analyses in simplex ASD 221 

Within stage IV, we attempted to reproduce the best-fitting GRM-SEM model identified in 222 

the population-representative SPARK sample (SALL) by studying ASD individuals from SSC 223 

simplex families. Matching SSC phenotypes showed little evidence for h2
SNP (Supplementary 224 

Figure 15), consistent with the smaller sample size. Both motor (DCDQ scores) and self-injurious 225 
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behaviour (RBSR) scores had to be excluded from follow-up due to near-zero h2
SNP point 226 

estimates. These two measures were replaced with further language/cognition and 227 

developmental phenotypes to allow for an empirical identification of three genetic dimensions. 228 

The final phenotype subset (SSSC) reflected phenotypes studied in SPARK: three 229 

language/cognition measures (language disorder, language age level, language level), general 230 

behaviour (ODD), three developmental milestones (age of crawling, age of self-feeding, age of 231 

walking), and the RBSR repetitive behaviour score (sameness behaviour).  232 

As in SPARK, a three-factor model (Figure 6, Supplementary Table 10) fitted the data 233 

best (Table 1, Supplementary Table 4), matching predicted eigenvalues. The first genetic factor 234 

(AF1) accounted for variation in language age level (λF1=0.33,SE=0.14; f2
g=0.21,SE=0.16) and age 235 

of self-feeding (λF1=-0.46,SE=0.19; f2g=1.00,SE<0.01), corresponding to the Alang factor structure 236 

in SPARK (Figure 3B,3E,3H, Figure 6B). Note, within SPARK, language level (i.e. an individual’s 237 

everyday language skills) and language age level (i.e. an individual’s spoken language for their 238 

age level) are strongly correlated (GCTA rg=1.00,SE=0.24) and showed, when modelled together, 239 

similar association patterns (e.g. SLL model, Supplementary Figure 7). The second genetic factor 240 

(AF2) described variation across developmental-delay-related phenotypes, with the strongest 241 

factor loading for age of walking (λF2=0.62,SE=0.14; f2
g=0.93,SE=0.22), comparable to the Adev 242 

factor structure in SPARK (Figure 3E,3H, Figure 6B). The third genetic factor (AF3) (Figure 6B) 243 

explained shared genetic variation (f2
g=0.75-1.00, Supplementary Table 10) across 244 

language/cognition and repetitive (RBSR sameness) behaviour. The strongest factor loadings 245 

were observed for language age level (λF3=0.61,SE=0.10), language disorder (λF3=-246 

0.51,SE=0.11), language level (λF3=0.37,SE=0.07), but also RBSR sameness behaviour 247 

(λF3=0.51, SE=0.12). This cross-trait genetic dimension in the SSC captured strong positive 248 

genetic correlations between language and repetitive behaviour (e.g. language level, RBSR 249 

sameness behaviour: GRM-SEM rg=0.97, SE=0.07, Figure 6D) that were absent in SPARK 250 

(language level, RBSR sameness behaviour: GRM-SEM rg=0, Supplementary Figure 9).  251 

Sensitivity analysis 252 

We carried out several sensitivity analyses. We (1) visually confirmed the similarity in 253 

structure between the best-fitting model and the bi-factor model across all analysed subsets (SDLD, 254 

SLL, SALL, SSSC) (Supplementary Table 4, Supplementary Figures 10-12,16). Next, we (2) 255 

corroborated the superiority in model fit for all identified GRM-SEM models in SPARK and the 256 

SSC by comparing their fit with exploratory GRM-SEM models (Supplementary Table 4), such 257 
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as one-factor independent pathway and IPC models (Supplementary Figure 17). To validate the 258 

predictive value of EFA models, we (3) confirmed the interchangeability of EFA methods 259 

predicting genetic factors (Supplementary Tables 5-6) and (4) found strong correlations between 260 

EFA-predicted and GRM-SEM estimated factor loadings (Pearson r > 0.98 for all analysed 261 

models, Supplementary Figure 18). Lastly, we (5) performed proof-of-principle simulations 262 

(Supplementary Note 3). We demonstrated the robustness of the proposed multi-step genomic 263 

covariance modelling approach (Figure 1), with little evidence for bias and sufficient 95% CI 264 

coverage for estimated factor loadings and derived variance components (Supplementary 265 

Tables 11-14, Supplementary Figures 19-20).  266 

DISCUSSION 267 

Investigating genomic covariance across a broad spectrum of phenotypes in ASD using 268 

SEM-based techniques, this case-only study of two large autism cohorts demonstrates that the 269 

common genetic architecture of ASD is multi-dimensional. Here, we identified evidence for at 270 

least three independent common genetic dimensions associated with phenotypic heterogeneity 271 

in ASD. 272 

For population-representative ASD, as reflected in SPARK, we identified three common 273 

genetic factors explaining predominantly variation in language/cognition, developmental delay 274 

and behavioural problems, with genetic dimensions essentially matching corresponding 275 

phenotypic measurements. For simplex ASD, within the SSC, we uncovered structural similarities 276 

supporting the first two factors (i.e. language/cognition and developmental delay), indicating 277 

conceptual replication. The major difference across cohorts concerned the genetic relationship 278 

between language/cognition and behavioural phenotypes. While genetic factors of 279 

language/cognition and behaviour were unrelated in population-representative ASD, the 280 

underlying phenotypes were strongly genetically related in simplex ASD and captured by a single 281 

dimension. Thus, profound structural differences exist in common genetic influences 282 

distinguishing population-representative and simplex ASD manifesting in ascertainment-specific 283 

patterns. Our findings strengthen the evidence for common genetic contributions to phenotypic 284 

variation in ASD (8,9,12) and offer insight into the underlying multi-dimensional common genetic 285 

architecture.  286 
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Across both cohorts, we found evidence for an independent language/cognition-related 287 

factor, as validated through association with higher liability to Asperger in SPARK. Although 288 

language performance is not included as a core symptom of ASD in the DSM-5 anymore, our 289 

findings confirm that autistic individuals differ considerably in their language presentation (30). 290 

While some children with ASD reach intact structural language skills, others are delayed or never 291 

master functional spoken language (30). Here, our analyses uncovered, through identification of 292 

the language factor, that genomic covariance between (higher) language level and (earlier) age 293 

of self-feeding with a spoon, an important personal-social developmental milestone which typically 294 

developing children master at about 15-18 months (31,32). Notably, the genetic influences 295 

contributing to the age by which children self-feed with a spoon were distinct from genetic factors 296 

underlying other motor developmental achievements, such as crawling, sitting or walking, when 297 

studied in SPARK. Infant autonomy in feeding, especially eating with the family, has been related 298 

to more advanced child language production and comprehension (33). Especially within SPARK 299 

(e.g. SLL model), age of self-feeding with a spoon showed moderate to strong relationships with 300 

multiple language-related phenotypes and may present an early marker of cognitive and language 301 

development in ASD. 302 

We also found robust evidence for a genetic factor that is related to developmental delay 303 

within SPARK and the SSC, explaining genetic variation underlying growth, such as the age of 304 

crawling, a developmental milestone children typically master between 9-18 months of age (34). 305 

Within SPARK, genetic variation was shared beyond the age of crawling (a proxy of the age of 306 

walking and sitting) across DCDQ motor control during movement (a proxy of DCDQ total score 307 

and fine motor handwriting), language disorder and RBSR self-injurious behaviour. These findings 308 

support the contribution of common genetic influences to variation in motor abilities, beyond 309 

association with de novo mutations (9), even if not captured by PGS for psychiatric disorders or 310 

PGSEA (9). The spectrum of genetically linked developmental phenotypes, furthermore, extends 311 

reports of genetic associations between ASD polygenic risk and later age of walking in population-312 

based samples (35).  313 

Genetically mediated relationships between language/cognition phenotypes and 314 

behaviour across cohorts were heterogeneous, highlighting ascertainment-specific patterns. 315 

Within SPARK, the behavioural genetic dimension was independent of the language/cognitive 316 

dimension of influences. The behavioural-problems factor explained liability to ODD and variation 317 

in repetitive behaviour, especially RBSR sameness behaviour that is a proxy of RBSR total scores 318 

and ritualistic behaviour, but not self-injurious behaviour. We validated this factor through inverse 319 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 25, 2022. ; https://doi.org/10.1101/2022.10.21.22281213doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.21.22281213
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

genetic association with PGSEA, extending previous findings (9), independent of the 320 

language/cognitive dimension. In other words, educational attainment-related associations with 321 

symptom variation in ASD are unlikely to implicate cognitive factors, as captured by common 322 

genetic influences. Instead, our findings suggest that behavioural problems within a population-323 

representative case-only ASD sample vary with non-cognitive correlates of socio-economic 324 

status. It is also possible that common genetic influences underlying the behavioural genetic 325 

dimension may, partially, tag rare variation given positive correlations between PGSEA, and rare 326 

variant risk scores (9) in SPARK. 327 

In contrast, within the SSC, we observed substantial genetic overlap between most 328 

language-related phenotypes and RBSR sameness behaviour. Simplex ASD, compared to 329 

multiplex ASD, is more often related to de novo mutations (11,14). Our findings may, therefore, 330 

present aetiological differences unique to simplex ASD, consistent with qualitative differences in 331 

the common genetic architecture of ASD individuals carrying de novo variants (5,6). Alternatively, 332 

genetic links between behaviour and language/cognition in the SSC might, to some degree, be a 333 

consequence of collider bias (36). Simplex families are recruited following strict ascertainment 334 

schemes (18). Collider bias can arise when two measures, such as behaviour and 335 

language/cognition, are independently related to a third variable, such as common genetic 336 

variation, and that third variable is conditioned upon (36). Here, the preferential ascertainment of 337 

simplex families depleted for inherited genetic risk (37), including common variation, may 338 

introduce artificial genetic relationships between behaviour and language/cognition. Stratifying 339 

SEM-predicted shared genetic factor structures by common, rare and de novo genetic 340 

architectures will shed further light on the complex links between genetic and phenotypic 341 

heterogeneity as part of future studies.  342 

Our study has multiple strengths and limitations. First, we developed a data-driven GRM-343 

SEM approach that utilises directly genotyped genome-wide information and facilitates building 344 

accurate multi-dimensional models of genomic covariance without the need for summary 345 

statistics. Here, we leverage genetic EFA to predict the genetic structure of the best-fitting GRM-346 

SEM model, which is confirmed through comparison with a saturated model. Second, we 347 

demonstrate that the common genetic architecture of ASD is multi-dimensional. Thus, genetic 348 

analyses modelling the common genetic architecture of ASD require a sufficiently high number of 349 

phenotypes to allow for the empirical identification of these dimensions. Third, GRM-SEM relies 350 

on population-based assumptions of genotype distributions (i.e. Hardy-Weinberg equilibrium) and 351 

may exclude individuals or genetic variation that do not meet these expectations. Fourth, any 352 
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genetic relationships within this study will reflect variation within an ASD case-only cohort. A 353 

mapping to external references, such as Asperger or PGSEA, can aid the interpretation of genetic 354 

factors across different research designs. Fifth, the lack of h2
SNP across phenotypes may not only 355 

reflect a lack of power but a lack of genetic heterogeneity across phenotypic variation in cases. 356 

Especially, social core phenotypes showed little evidence for h2
SNP possibly reflecting high social 357 

deficits across all studied individuals with ASD. Sixth, in this study we used transformed scores 358 

to aid model simplicity and the convergence of models. While we cannot exclude bias, given the 359 

robustness of sensitivity analyses and the consistency with previous findings, it is unlikely that 360 

transformed scores profoundly changed underlying genetic structures. Seventh, our study cannot 361 

yet address sex-specific differences in common genetic architectures, as previously reported (9), 362 

especially across non-European ancestry backgrounds. Because the prevalence of ASD is higher 363 

in males, the sex distribution in both samples is skewed. There is a low representation of females 364 

in ASD cohorts, given male preponderance of the condition, that prevents robust modelling using 365 

GRM-SEM and our results may, therefore, be less generalisable for females. 366 

Together our results describe phenotypic variation in ASD as complex traits that are, at 367 

least partially, genetically linked due to common genetic factors that are augmented by 368 

ascertainment-specific patterns. Here, we show that multi-dimensional common genetic 369 

architectures can be accurately identified with a data-driven GRM-SEM approach utilising 370 

genome-wide genotyping data. 371 

ONLINE METHODS 372 

Samples 373 

The SPARK cohort (https://sparkforautism.org/) (17) is a nationwide autism study across 374 

the US including simplex and multiplex families. Here, we studied SPARK phenotype (version 3) 375 

and genome-wide (version November 2018) data. This data freeze includes 59,218 individuals 376 

between ages 1 and 85, who received a professional diagnosis of ASD/autism (85%<18 years; 377 

79% male), their biological parents, and, if available, one unaffected control sibling as well as all 378 

affected siblings for multiplex families (21,689 trios (including simplex families); 6,552 multiplex 379 

families). Written informed consent was completed by the parent or legal guardian of the children 380 

participating in the study.  381 
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The SSC cohort (https://www.sfari.org/resource/simons-simplex-collection/) (18) is a US 382 

collection of simplex families. Here, we investigated phenotype (version 15.3) and genome-wide 383 

(whole-genome 2 data release) data. This data freeze represents 2,591 affected children aged 4 384 

to 17 years 11 months, including 2,643 simplex families with one (and only one) child with ASD 385 

and their unaffected biological parents and unaffected siblings. Informed consent and assent were 386 

provided for all participants.  387 

We received ethical approval to access and analyse pre-collected de-identified genotype 388 

and phenotype data from these cohorts from the Radboud University Ethics Committee Social 389 

Science. All analyses were restricted to individuals with ASD with phenotypic and genetic 390 

information. 391 

Genotype information 392 

SPARK. Genome-wide genotypes were obtained with the Infinium Global Screening 393 

Array-24 v.1.0. After individual and variant quality control (QC), 5,331 unrelated individuals 394 

(79.85% males, median age: 9 years) of European ancestry diagnosed with ASD, with genetic 395 

and phenotype information (see below) were included in the study (Supplementary Methods 1, 396 

Supplementary Figure 1). Individuals were excluded due to confirmed genetic 397 

syndromes/conditions, birth complications (i.e. birth defects, foetal alcohol syndrome, bleeding 398 

into the brain, insufficient oxygen at birth), other cognitive impairments or a brain injury (i.e. brain 399 

infection, lead poisoning, traumatic brain injury), similar to SSC exclusion criteria (see below). A 400 

genetic relationship matrix (GRM) (19) based on directly genotyped markers (NSNPs=450,491) was 401 

created in PLINK (v1.9) (38), applying a relationship cut-off of 0.05. 402 

SSC. We used genome-wide data from three arrays: Illumina Human1M v1.0, Illumina 403 

Human1M-Duov3 and Illumina HumanOmni2.5. For each array, individual and variant QC were 404 

performed separately (see Supplementary Methods 2). Subsequently, genotype data were 405 

merged across the three arrays and again subjected to individual and variant-based QC 406 

(Supplementary Methods 2). After QC, 1,946 unrelated individuals (86.33% males, median age: 407 

9 years) of European ancestry diagnosed with ASD with genetic and ASD phenotype information 408 

were included in the study (Supplementary Figure 2). Individuals were excluded according to 409 

SSC exclusion criteria, such as premature birth, brain injury/damage/abnormality, prenatal/birth 410 

complications, confirmed genetic syndromes/conditions, severe sensory/motor difficulties or 411 
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nutritional/psychological deprivation. A GRM (19) based on directly genotyped markers 412 

(NSNPs=457,961) was created in PLINK (v1.9) (38), applying a relationship cut-off of 0.05. 413 

Phenotypes 414 

SPARK. We studied parent-reported measures of ASD phenotypes and co-morbid 415 

disorders/disabilities spanning the domains of language and cognition (9 measures), general 416 

behaviour (9 measures), repetitive behaviour (7 measures), social (2 measures) and motor 417 

abilities (6 measures), as well as affective disorders (3 measures) and developmental milestones 418 

(11 measures). Phenotypes were extracted from the Basic Medical Screening Questionnaire 419 

(BMS), the Social Communication Questionnaire-Lifetime (SCQ) (39), the SPARK Background 420 

History Questionnaire (BGHX), the Repetitive Behaviours Scale-Revised (RBSR) (40), and the 421 

Developmental Coordination Disorder Questionnaire (DCDQ) (41), including 47 out of 149 422 

available SPARK phenotypes (Supplementary Methods 1, Supplementary Figure 1, 423 

Supplementary Table 1).  424 

The selected phenotypes included 21 categorical (within-sample prevalence of 5%) and 425 

26 continuous phenotypes. At least 2,910 autistic individuals had phenotype and genotype data 426 

per trait (Supplementary Table 1). Among all the studied individuals in the SPARK sample, 427 

information on ASD subcategories was available for 1,754 individuals only: Asperger (Nind=716, 428 

79.05% males, age range: 2-60 years), childhood autism (Nind=624, 81.57% males, age range: 1-429 

55 years) and Pervasive Developmental Disorder Not Otherwise Specified (PDD-NOS, Nind=414, 430 

males=80.67% males, age range: 2-45 years). Consequently, we did not include ASD 431 

subcategory information directly within our modelling approach but instead mapped it onto the 432 

best-fitting model (reference Asperger=1, childhood autism=0, PDD-NOS=0, non-subcategory 433 

data= NA, deviance-transformed, see below). 434 

SSC. We studied parent-reported measures of language and cognition (5 measures), 435 

general behaviour (1 measure), repetitive behaviour (4 measures), and motor abilities (3 436 

measures), as well as developmental milestones (4 measures). These were comparable to 437 

SPARK measures, for follow-up analyses. Phenotypes were selected from the SSC BGHX, the 438 

SSC Diagnosis Summary Form, the SSC Medical History Interview, RBSR (40), DCDQ (41), the 439 

Child Behavior Checklist (CBCL 6-18) (42), and the Autism Diagnostic Observation Scale (ADOS) 440 

(43) (Supplementary Figure 2, Supplementary Table 2). 441 

Phenotype transformations 442 
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Continuous scores were transformed with ordinary least square regression and 443 

categorical scores with logistic regression [R:stats package]. Before transformation, all 444 

phenotypes were adjusted for sex, age, age squared, and ten ancestry-informative principal 445 

components (44), where the latter correct for subtle ancestry differences among individuals of 446 

Caucasian ancestry. For continuous phenotypes, residuals were rank-transformed and regressed 447 

again on covariates to achieve normality of transformed scores without a re-introduction of 448 

covariate effects (fully-adjusted two-stage rank normalisation)(45). For categorical phenotypes 449 

and co-morbid disorders, we constructed deviance residuals as the difference between the logistic 450 

model fit and the fit of an ideal model. Deviance residuals approximate the liability as observed 451 

within an ASD-only sample (henceforth referred to as liability), given that SPARK is a population-452 

representative sample of ASD individuals, and there is no over-sampling of ASD cases with 453 

specific co-morbid disorders or phenotypes. For the SSC, liability is approximated for a simplex 454 

ASD case-only sample. We carried out extensive sensitivity analyses to ensure the validity of the 455 

transformed scores. For this purpose, we compared h2
SNP estimations (Supplementary Figure 456 

3) and phenotypic correlation analyses for untransformed and transformed scores 457 

(Supplementary Figure 21). Pertinent to this work, analyses were conducted with transformed 458 

scores to ease the modelling process, i.e. rank-transformed scores for continuous phenotypes 459 

and deviance residuals for categorical phenotypes. 460 

Univariate and bivariate genetic variance analyses 461 

Univariate (h2
SNP) analyses, reflecting, here, the proportion of phenotypic variance among 462 

autistic individuals as explained by genotyped variants (SNPs), were carried out with GREML, as 463 

implemented in Genome-wide Complex Trait Analysis (GCTA, v1.93.0) software (19). GRMs were 464 

constructed from genome-wide genotyping information (see Supplementary Methods 1-2). 465 

Bivariate genetic correlations (rg) across phenotypes were estimated using bivariate 466 

GREML (20). Genetic correlations reflect the extent to which the same genetic factors influence 467 

two measures.  468 

Multivariate modelling of genomic covariance 469 

We modelled the multivariate genetic variance structure of ASD phenotypes using GRM-470 

SEM as implemented in R:grmsem (v1.1.2, https://gitlab.gwdg.de/beate.stpourcain/grmsem) 471 

previously known as gsem (15,16). 472 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 25, 2022. ; https://doi.org/10.1101/2022.10.21.22281213doi: medRxiv preprint 

https://gitlab.gwdg.de/beate.stpourcain/grmsem
https://doi.org/10.1101/2022.10.21.22281213
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

GRM-SEM applies structural equation modelling techniques to analyse genomic 473 

covariance in samples of unrelated individuals using a maximum likelihood approach (15). We 474 

define the expected phenotypic variance, ΣV, of a multivariate normal phenotype Y (for 1...k traits) 475 

where Yi ~ Nk (μ, ΣV), as the sum of the expected genetic and residual variance components, ΣA 476 

and ΣE: 477 

ΣV= ΣA+ΣE        (1) 478 

where ΣV, ΣA and ΣE are symmetric k x k matrices. The residual variance component, 479 

potentially, includes environmental factors, random error, non-additive genetic variance, rare 480 

variance or any other genetic influence not captured by the GRM (15,16,19). Within GRM-SEM, 481 

genetic and environmental influences are modelled as latent variables. The phenotypic variance 482 

for each measure Y can be dissected into genetic and residual influences (AE model), analogous 483 

to twin research (46): 484 

ΣV=ΛAΨAΛA
T  ⨂ G + ΛEΨEΛE

T  ⨂ I     (2) 485 

where ΛA and ΛE are matrices of genetic and residual factor loadings with dimensions k x 486 

p, where p is the number of factor loadings. ΨA and ΨE are p x p matrices of genetic and residual 487 

factor variances, respectively. G is a n x n GRM matrix for all pairs of n independent individuals 488 

(19) constructed from the variants presented on a genome-wide genotyping chip, and I is a n x n 489 

identity matrix. The symbol ⊗ denotes the Kronecker product. In this work, ΨA and ΨE have been 490 

restricted to an identity matrix, given modest genetic correlations between latent variables, as 491 

predicted by oblique genetic EFA. Bi-factor models confirmed the independence of factor 492 

structures (see below). Note that we assume besides structured genetic covariance also 493 

structured residual covariance that can contribute to phenotypic covariance patterns (16). We 494 

analyse, here, a proportion of genetic variance in ASD individuals that can be modelled according 495 

to population-based principles.  496 

We fitted the following multivariate models (15,16):  497 

i. Cholesky model: The Cholesky decomposition model (Supplementary Figure 17A) 498 

is a saturated i.e. fully parametrised descriptive model without any restrictions on the 499 

structure of latent genetic and residual influences. This model is fitted to the data 500 

through the decomposition of both the genetic variance and residual variance into as 501 

many latent variables (factors) as there are observed variables. Here, ΛA and ΛE are k 502 
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x k lower diagonal matrices. Note that other saturated models, such as direct 503 

symmetric models (47), were not fitted due to convergence problems with 504 

multicollinear data (not shown). Cholesky-derived genetic trait correlations provided 505 

input data to estimate the dimensionality of shared genetic factors (nAC) using genetic 506 

PCA (see below). The Cholesky-derived genetic trait covariance was used as input to 507 

predict the genomic covariance structure of the best-fitting model, with genetic EFA 508 

(see below). 509 

ii. Independent pathway model: The independent pathway model (Supplementary 510 

Figure 17B) specifies one or more shared genetic and one or more shared residual 511 

factors, where nAC is the number of shared genetic factors and nEC is the number of 512 

residual factors, in addition to trait-specific genetic and residual influences, one for 513 

each trait. ΛA and ΛE have the dimensions k x pa and k x pe, respectively, where pa is 514 

the sum of nAC and k, and pe is the sum of nEC + k. Pertinent to this study, we fitted 1-515 

factor models only (nAC = nEC = 1). 516 

iii. Hybrid Independent Pathway/Cholesky model (IPC). The IPC model (Supplementary 517 

Figure 17C) structures the genetic variance as an independent pathway model 518 

(consisting of shared and measurement-specific influences where ΛA has a dimension 519 

of k(nAC+k)) and the residual variance as a Cholesky model (where ΛE is a lower 520 

diagonal k x k matrix). Here, we fitted 1-factor (nAC=1; ktraits≥3) and multi-factor (nAC=2, 521 

k≥6; nAC=3; k≥8) IPC models, such that for the latter NΛ(EFA)<NΛ(saturated). The genetic 522 

part of multi-factor IPC models was informed by the estimated number of genetic 523 

factors nAC using proxy genetic PCA and the estimated factor loadings from genetic 524 

EFA (see below). Specifically, we used EFA-predicted information to define starting 525 

values and constraints (i.e. setting EFA factor loadings |λ|<0.1 in the corresponding 526 

genetic part of the GRM-SEM model to zero). As a rule of thumb, zero loadings have 527 

been defined as factor loading scores between -.10 and +.10 (48). Once fitted, we 528 

further trimmed the model by removing specific genetic factor loadings near zero 529 

(GRM-SEM factor loadings |λ|<0.01). The residual part of the model remained 530 

unchanged and was fitted as a Cholesky model. 531 

To confirm the independence of shared genetic factors for the best-fitting multi-532 

factor IPC model, we fitted a bi-factor model of genetic variance within the IPC 533 

framework. The bi-factor model (49) consists of a general factor and one or more 534 

grouping factors, where each trait loads on the general factor, assuming statistical 535 
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independence between these latent genetic dimensions. Given the bi-factor 536 

parametrisation, the model benefits from rotational invariance and unlimited 537 

dimensionality (50).  538 

The goodness-of-fit for each model was evaluated with likelihood ratio tests (LRTs), 539 

Akaike information criterion (AIC) and the Bayesian information criterion (BIC) (51). Evidence for 540 

GRM-SEM factor loadings was assessed using Wald tests, based on unstandardized scores, 541 

while reported coefficients λ represent standardised factor loadings (setting the phenotypic 542 

variance to unit variance).  543 

For the best-fitting models, we estimated heritability (h2
SNP), genetic correlations (rg), and 544 

factorial co-heritabilities (f2
g, i.e. the proportion of total trait genetic variance explained by a specific 545 

genetic factor). We defined bivariate genetic correlation between phenotypes, measuring the 546 

extent to which two phenotypes share genetic factors (ranging from -1 to 1 (52) according to:  547 

𝑟𝑔 =
𝜎𝑔12

√𝜎𝑔1
2 𝜎𝑔2

2
      (3) 548 

where σg12 is the genetic covariance between two phenotypes 1 and 2, and σ2
g1 and σ2

g2 549 

are the respective genetic variances. In addition, we estimate the factorial co-heritability fg
2 as the 550 

relative contribution of a genetic factor to the genetic variance of a phenotype, defined as: 551 

𝑓𝑔
2 =

𝜎𝑔𝑖𝑡
2

∑ 𝜎𝑔𝑖𝑡
2 =

𝜎𝑔𝑖𝑡
2

𝜎𝑔𝑡
2       (4) 552 

where σ2
g_it is the genetic variance of the genetic factor i contributing to trait t and σ2

g_t the 553 

total genetic variance of trait t, based on standardised factor loadings. Corresponding SEs were 554 

derived using the Delta method.  555 

Phenotype selection. For GRM-SEM, we studied transformed phenotypes (see above) in 556 

combination with GRMs constructed from genotyped genome-wide variants in unrelated ASD 557 

individuals of European descent. GRM-SEM models are computationally expensive (15). For 558 

example, an 8-factor Cholesky decomposition model, as fitted within this study, can require up to 559 

6 weeks of computing time even on a system incorporating at least four parallel cores of 3 GHz, 560 

and requiring up to 40 Gb (max vmem) memory. Hence, we streamlined the modelling process 561 

by combining measures of the same questionnaire (i.e. BGHX, DCDQ and RBSR) that shared an 562 

underlying genetic architecture (GRM-SEM rg=1). We only retained measures with the highest 563 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 25, 2022. ; https://doi.org/10.1101/2022.10.21.22281213doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.21.22281213
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

genetic correlations to (a) limit the number of studied phenotypes using proxy measures and (b) 564 

aid model convergence by reducing collinearity. 565 

Eigenvalue decomposition of genetic correlations: genetic PCA 566 

The dimensionality of shared genetic factors (nAC) across a set of phenotypes was 567 

estimated by the spectral decomposition (53) [R:base package]. For the estimation, we used a 568 

Cholesky-derived genetic correlation matrix. Eigenvalues of this genetic PCA were plotted as a 569 

scree plot. The number of factors was estimated with the Optimal Coordinate criterion [R:nFactors 570 

package](54), applying a joint Kaiser’s rule (eigenvalue > 1) (55,56) and Cattell’s scree test (57).  571 

Exploratory factor analysis of genetic covariance: genetic EFA 572 

Given evidence for multiple genetic factors (dimensionality of shared genetic factors 573 

nAC>1), we carried out for each set of selected phenotypes a genetic EFA (58) predicting 574 

underlying genetic factor structures, using lavaan (59) [R:lavaan package] software. As genetic 575 

trait covariance is not directly observable, we analysed the predicted genetic covariance matrix 576 

derived from a saturated (Cholesky) GRM-SEM model (see above). Factor solutions were 577 

estimated using a Diagonally Weighted Least Squares (DWLS) algorithm (60), i.e. a robust 578 

Weighted Least Squares (WLS) method that can be applied to skewed data where the likelihood 579 

function for any parameter θ is given as 580 

𝑙(𝜃) =
1

2
𝑡𝑟[(𝑆 − Σ(𝜃))W−1]     (5) 581 

where S is the observed (here Cholesky predicted genetic covariance matrix) and Σ the 582 

EFA model-implied genetic covariance matrix. Inverse weighting was carried out with a diagonal 583 

weight matrix W, based on the estimated variance Ṽ of the genetic covariance VA, as derived with 584 

a Cholesky model, where W = diag(Ṽ(VA)). For comparison, we also carried out an unweighted 585 

least square estimation, where the identity matrix replaces W. Factors in lavaan were rotated 586 

using either orthogonal or oblique rotation techniques, performing EFA varimax and oblimin, 587 

respectively. We opted for an EFA varimax model if the predicted genetic correlation between 588 

genetic factors by an EFA oblimin model was modest (i.e. r≤0.32 (21) and thus ignorable) or if the 589 

EFA oblimin model produced a similar pattern of loadings as EFA varimax (21). In other words, 590 

the EFA oblimin solution did not increase the simplicity of the model (21). The factor loadings of 591 

the selected EFA model were utilised to define starting values and constraints of GRM-SEM multi-592 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 25, 2022. ; https://doi.org/10.1101/2022.10.21.22281213doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.21.22281213
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

factor IPC models, setting genetic EFA factor loadings |λ|<0.1 in the corresponding genetic part 593 

of the GRM-SEM model to zero (21).  594 

Note that an evaluation of EFA models based on model fit criteria established in 595 

observational research is not meaningful here, as the studied genetic covariance matrix 596 

(Cholesky) is estimated with an error that may result in negative uniqueness of the predicted 597 

genetic variance, violating modelling assumptions (known as a Heywood case) (61).  598 

For sensitivity analyses, we also compared estimates of EFA lavaan with estimates of 599 

other EFA software such as fa [R:psych package] which does not allow for inverse weighting (62). 600 

Simulation study 601 

To evaluate the robustness of the proposed multi-step genomic covariance modelling 602 

approach, and in particular to assess bias, we carried out simulations comparing true values with 603 

GRM-SEM IPC factor loadings, but also EFA-predicted factor loadings (Supplementary Tables 604 

11-14, Supplementary Figures 19-20), as described in detail in the supplement 605 

(Supplementary Note 3).  606 

In brief, assuming multivariate normality, we simulated six-variate traits with either two 607 

shared genetic factors without correlation or two shared genetic factors with cross-loading as 608 

detailed by path models in Supplementary Figures 19 and 20, respectively, across 20 replicates. 609 

Each six-variate trait was based on Z-standardized phenotypes with 2,000 individuals per 610 

phenotype and (for simplicity) 5,000 causal loci, to increase power. Besides the median estimate, 611 

simulation performance measures included the median bias, the median empirical standard error 612 

(empSE) and coverage of 95%-confidence intervals (such that the estimated 95%-confidence 613 

interval contains the true value), and the respective Monte-Carlo SEs (MCSE).  614 

Multiple testing 615 

A correction for multiple testing of estimated GRM-SEM factor loadings of our analysis is 616 

not directly applicable. We jointly analyse multiple phenotypes using a multivariate approach to 617 

comprehensively represent all shared genetic factors across the studied phenotypic spectrum. 618 

h2
SNP and rg estimates from a GCTA screen within Stage I are not individually interpreted, given 619 

the preliminary character of these analyses. However, if a multiple testing adjustment for 620 

individual measures reported during Stage I were considered, an experiment-wide threshold of 621 
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p<0.0015 (0.05/34 independent measures) would be needed to be applied, as estimated with 622 

Matrix Spectral Decomposition (matSpD) (63), based on phenotypic score correlations.  623 

Univariate polygenic scoring analysis in SPARK 624 

Consistent with current guidelines (64), we constructed PGS for EA within SPARK based 625 

on high-quality genome-wide imputed SNPs (Supplementary Methods 3), utilising available 626 

summary statistics from recent EA meta-GWAS (65). For this purpose, we used PRS-CS software 627 

(66), which applies continuous-shrinkage parameter to adjust SNP effect sizes for linkage 628 

disequilibrium. Once SNP effect sizes were calculated in PRS-CS, PGSEA scores were calculated 629 

in PLINK (38) and, subsequently, Z-standardised.   630 
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TABLES 631 

Table 1. Model fit comparison. 632 

Model Type log-likelihood Npar AIC BIC LRTCholesky LRTBi-factor 

      Δχ2(Δdf) p Δχ2(Δdf) p 

 SPARK 

SDLD model: Ntraits=7, Nind=5279 

Cholesky saturated -13343.57 56 26799.13 27167.14 - - 

Bi-factor two-factor -13345.64 46 26783.28 27085.56 4.14(10) 0.94 - 

IPC best-fit two-factor -13345.66 40 26771.33 27034.19 4.19(16) 1.00 0.05(6) 1.00 

SLL model: Ntraits=7, Nind=5279 

Cholesky saturated -12524.86 56 25161.72 25529.72 - - 

Bi-factor  two-factor -12526.61 46 25145.23 25447.51 3.51(10) 0.97 - 

IPC best-fit two-factor -12527.13 41 25136.27 25405.70 4.55(15) 1.00 1.04(5) 0.96 

SALL (SDLD, SLL and SCRL) model: Ntraits=8, Nind=5279 

Cholesky saturated -15248.61 72 30641.23 31114.37 - - 

Bi-factor three-factor -15249.97  62 30623.94 31031.37 2.71(10) 0.99 - 

IPC best-fit three-factor -15250.96 53 30607.92 30956.21 4.69(19) 1.00 1.98(9) 0.99 

 SSC 

SALL model: Ntraits=8, Nind=1940 

Cholesky saturated -6342.50 72 12828.99 13230.07 - - 

Bi-factor three-factor -6342.59 63 12811.18 13162.12 0.19(9) 1.00 - 

IPC best-fit three-factor -6342.60 53 12791.19 13086.43 0.20(19) 1.00 0.01(10) 1.00 

 633 

The genomic covariance structure across SPARK and SSC phenotype sets were modelled using 634 

saturated, bi-factor and multi-factor GRM-SEM IPC models (additional comparisons with one-635 

factor IPC models are shown in Supplementary Table 4). The fit across models was compared 636 

with likelihood ratio tests (LRT), AIC and BIC for the phenotype subsets: SDLD, SLL, SALL(combined 637 

subset: SDLD, SLL, SCRL) and SSSC. The lowest AIC and BIC values are shown in bold.  638 

Abbreviations: AIC (Akaike information criterion); BIC (Bayesian information criterion); IPC 639 

(Hybrid Independent Pathway (genetic part) / Cholesky (residual part) model); Npar (number of 640 

parameters), SCRL (age of crawling subset), SDLD (language disorder subset), SLL (language level 641 

subset), and SSSC (follow-up subset).  642 
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FIGURES  643 
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 644 

Figure 1. Workflow of the study. (A) Multivariate discovery analyses were carried out in the 645 

Simons Powering Autism Research (SPARK) sample (Stages I-III) and the best-fitting final 646 

SPARK multi-factor model was followed-up in the Simons Simplex Collection (SSC, Stage IV). 647 

(B) Data-driven approach to model genomic covariance with genetic-relationship-matrix structural 648 

equation modelling (GRM-SEM). We fitted (i) a saturated GRM-SEM (Cholesky) model to 649 

describe the genetic architecture. Based on this information, we (ii) predicted the number of 650 

shared genetic factors (nAC) across phenotypes through eigenvalue decomposition of Cholesky-651 

derived genetic correlations. If nAC >1, we (iii) approximated the underlying genetic factor structure 652 

through exploratory factor analysis (EFA) of Cholesky-derived genetic trait covariance. We used 653 

this information on genetic factor structures from (ii) and (iii) to fit (iv) multi-factor Independent 654 

Pathway/Cholesky (IPC) models, including bi-factor models (to confirm the independence of 655 

shared genetic factors). For comparison only, we fitted (v) one-factor Independent Pathway (IP) 656 

and IPC models, analogous to twin analyses. We compared (vi) the model fit of multi-factor 657 

models to one-factor models and the saturated model to identify the best-fitting model. This multi-658 

step approach was repeated until all phenotype subsets were combined into a final model. 659 

Eventually, we (vii) characterised the factor structure of the final best-fitting model by mapping it 660 
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to a clinical reference (DSM-IV-based ASD subcategories) and to the polygenic score for 661 

educational attainment (PGSEA), enhancing the interpretability of predicted factor structures.   662 
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 663 
Figure 2. Screen for heritable and genetically interrelated phenotypes in SPARK. (A) 664 

Heritability (h2
SNP) of continuous and categorical ASD phenotypes (p≤0.1) as estimated by GCTA. 665 

A complete figure of all analysed phenotypes is shown in Supplementary Figure 3. The error bars 666 

represent standard errors. Estimates were based on transformed scores: deviance residuals (for 667 

categorical phenotypes) or rank-transformed residuals (for continuous phenotypes). (B) The 668 

lower triangle shows the genetic correlation screen (rg) across ASD phenotypes as shown in (A), 669 

passing p(rg)≤0.1, as estimated with GCTA. A complete figure of all correlations is shown in 670 

Supplementary Figure 4. The upper triangle shows the selected phenotype subsets that, together, 671 

comprehensively capture the genetic correlations (lower triangle) across studied phenotypes. 672 

Each phenotypic subset has a ‘node’ phenotype: SDLD (language disorder), SLL (language level) 673 

and SCRL (age of crawling). Phenotypes within a subset are directly genetically correlated with the 674 

‘node’ phenotype (p≤0.1). The black boxes symbolise proxy phenotypes, as identified within uni-675 

factorial GRM-SEM (rg=1, Supplementary Figure 5). Circled ‘x’ within shaded boxes indicate the 676 

phenotypes that are included in each subset and were directly modelled with GRM-SEM. A black 677 

‘x’ indicates directly estimated and a grey ‘x’ indirectly (proxied) genetic relationships. Phenotypes 678 
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were adjusted for covariates and transformed into either rank-transformed residuals (continuous 679 

measures) or deviance residuals (categorical measures). 680 

Abbreviations: DCDQ (Developmental Coordination Disorder Questionnaire), GCTA (Genome-681 

wide Complex Trait Analysis), GRM-SEM (Genetic Relationship Matrix Structural Equation 682 

Modelling), ODD (oppositional defiant disorder), RBSR (Repetitive Behaviour Scale-Revised).   683 
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 684 
Figure 3. Multi-factor GRM-SEM models in SPARK. (A) Scree plot, (B) path diagram and (C) 685 

standardised genetic variance (GRM-SEM h2
SNP) plot of the best-fitting GRM-SEM IPC model for 686 

the language disorder (SDLD) set. (D) Scree plot, (E) path diagram and (F) standardised genetic 687 

variance (GRM-SEM h2
SNP) plot of the best-fitting GRM-SEM model for the language level (SLL) 688 

set. (G) Scree plot, (H) path diagram and (I) standardised genetic variance (GRM-SEM h2
SNP) plot 689 

of the best-fitting GRM-SEM model for the combined (SALL: SDLD, SLL and SCRL set) set. (A,D,G) 690 

Scree plots are based on the eigenvalue decomposition of genetic correlations derived from a 691 

GRM-SEM Cholesky model, depicting the number of estimated shared genetic factors (in black) 692 

according to the optimal coordinate criterion. The dashed line indicates the “scree” of the plot 693 
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(grey). (B,E,H) Observed measures are represented by squares and latent variables by circles 694 

(A: shared genetic factor, AS: specific genetic factor, E: residual factor). Dotted and solid single-695 

headed arrows (factor loadings) define relationships between variables with p>0.05 and p≤0.05, 696 

respectively. The genetic part of the model has been modelled using an Independent Pathway 697 

model, and the residual part using a Cholesky model (grey). (C,F,I) SEs for GRM-SEM h2
SNP 698 

contributions have been omitted for clarity. Note that no GRM-SEM model was fitted to the third 699 

SCRL (age of crawling) subset, as the number of genetic factors could not be unambiguously 700 

predicted by the optimal coordinate criterion.  701 

Abbreviations: Alang (Genetic language factor), Adev (Genetic developmental-delay factor), Abeh 702 

(Genetic behavioural-problems factor), DCDQ (Developmental Coordination Disorder 703 

Questionnaire), h2
SNP (Single nucleotide polymorphism-based heritability), IPC (Independent 704 

Pathway-Cholesky GRM-SEM model), ODD (Oppositional Defiant Disorder), RBSR (Repetitive 705 

Behaviours Scale-Revised).  706 
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 707 
Figure 4. Correlations for the combined (SALL) phenotypic subset. Figure shows (A) GRM-708 

SEM genetic correlations, (B) GCTA genetic correlations and (C) Spearman phenotypic 709 

correlations. All correlations are based on transformed measures. 710 

Abbreviations: GCTA (Genome-wide Complex Trait Analysis), GRM-SEM (Genetic Relationship 711 

Matrix Structural Equation Modelling), ODD (oppositional defiant disorder).   712 
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 713 
Figure 5. ASD subcategory mapping of the multi-factor GRM-SEM model for the combined 714 

(SALL) set in SPARK. (A) Path diagram of an extended GRM-SEM IPC model mapping liability to 715 

Asperger (reference: Asperger against other ASD subcategories) onto the model structure of the 716 

best-fitting (SALL, Figure 3H) SPARK model. (B) Corresponding standardised genetic variance 717 

(GRM-SEM h2
SNP) plot. SEs for GRM-SEM h2

SNP contributions have been omitted for clarity. (C) 718 

Genetic correlations with liability to Asperger. (D) Path diagram of an extended GRM-SEM IPC 719 

model mapping the polygenic score for educational attainment (PGSEA) onto the model structure 720 

of the best-fitting (SALL, Figure 3H) SPARK model. (E) Corresponding standardised genetic 721 

variance (GRM-SEM h2
SNP) plot. SEs for GRM-SEM h2

SNP contributions have been omitted for 722 

clarity. (F) Genetic correlations with the PGSEA. (A,D) Observed measures are represented by 723 

squares and latent variables by circles (Alang/Adev/Abeh: shared genetic factor, AS: specific genetic 724 

factor, E: residual factor). Dotted and solid single-headed arrows (factor loadings) define 725 
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relationships between variables with p>0.05 and p≤0.05, respectively. The genetic part of the 726 

model has been modelled using an Independent Pathway model, and the residual part using a 727 

Cholesky model (grey).  728 

Abbreviations: Alang (Genetic language factor), Adev (Genetic developmental-delay factor), Abeh 729 

(Genetic behavioural-problems factor), DCDQ (Developmental Coordination Disorder 730 

Questionnaire), h2
SNP (Single nucleotide polymorphism-based heritability), IPC (Independent 731 

Pathway-Cholesky GRM-SEM model), ODD (Oppositional Defiant Disorder), RBSR (Repetitive 732 

Behaviours Scale-Revised), rg (genetic correlation).  733 
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 734 
Figure 6. Follow-up multi-factor GRM-SEM model in the SSC (SSSC). (A) Scree plot based on 735 

the eigenvalue decomposition of genetic correlations derived from a GRM-SEM Cholesky model, 736 

depicting the number of estimated shared genetic factors (in black) according to an optimal 737 

coordinate criterion. The dashed line indicates the “scree” of the plot (grey). (B) Path diagram 738 

depicting the best-fitting multi-dimensional GRM-SEM IPC model based on largely comparable 739 

phenotypes as studied in SPARK. Observed measures are represented by squares and latent 740 

variables by circles (A: shared genetic factor, AS: specific genetic factor, E: residual factor). 741 

Dotted and solid single-headed arrows (factor loadings) define relationships between variables 742 

with p>0.05 and p≤0.05, respectively. The genetic part of the model has been modelled using an 743 

Independent Pathway model, and the residual part using a Cholesky model (grey). (C) 744 

Corresponding standardised genetic variance (GRM-SEM h2
SNP) plot. SEs for GRM-SEM h2

SNP 745 
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contributions have been omitted for clarity. (D) Corresponding correlogram of genetic correlations. 746 

Numeric values for genetic correlations that are not predicted by the genetic model structure were 747 

omitted.  748 

Abbreviations: AF1,2,3 (Genetic factor 1,2,3), h2
SNP (Single nucleotide polymorphism-based 749 

heritability), IPC (Independent Pathway-Cholesky GRM-SEM model), ODD (Oppositional Defiant 750 

Disorder), rg (genetic correlation).  751 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 25, 2022. ; https://doi.org/10.1101/2022.10.21.22281213doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.21.22281213
http://creativecommons.org/licenses/by-nc-nd/4.0/


36 

DATA AVAILABILITY 752 

Genotype and  phenotype data from the SPARK and SSC cohorts are available upon 753 

application and approval from the Simons Foundation Autism Research Initiative (SFARI) 754 

(https://www.sfari.org/resource/autism-cohorts/). Approved researchers can obtain the SPARK 755 

and SSC population dataset described in this study by applying at https://base.sfari.org . GWAS 756 

summary statistics for educational attainment were accessed through the Social Science Genetic 757 

Association Consortium (SSGAC, https://thessgac.com/). 758 

CODE AVAILABILITY 759 

In this study, we used the following software packages: PLINK (PLINK v1.9, 760 

https://www.cog-genomics.org/plink/1.9/), PRScs (https://github.com/getian107/PRScs),  GCTA-761 

GREML (GCTA v1.93, https://cnsgenomics.com/). We used the following R packages: stats 4.0.2, 762 

base 4.0.2, nFactors 2.4.1, psych 2.2.3, lavaan 0.6-10, grmsem 1.1.2 763 

(https://gitlab.gwdg.de/beate.stpourcain/grmsem).  764 
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