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Key Points 

 

Question: What is the genetic architecture underlying vocabulary acquisition during language 

development, and does it affect links with later-life outcomes? 

Findings: At least two genetic components contribute to vocabulary size, predominantly distinguishing 

infant expressive from toddler receptive vocabulary. Matching patterns of genetic overlap were found with 

later-life outcomes: Larger infant expressive but smaller toddler receptive vocabulary size was correlated 

with higher ADHD risk and/or childhood maltreatment exposure (a behavioural proxy). Consistently, later-

life cognition was associated with toddler vocabulary scores only, irrespective of power. 

Meaning: The genetic architecture underlying vocabulary acquisition is dynamic, shaping polygenic 

associations with later-life behaviour and cognition.  
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Abstract 

 

Importance: The number of words a child produces (expressive vocabulary) and understands (receptive 

vocabulary) change rapidly during infancy and toddlerhood, partially due to genetic factors. However, the 

genetic architecture underlying vocabulary development and association patterns with later-life outcomes, 

have not yet been fully characterised. 

Objective: To (i) study the multivariate genetic architecture underlying vocabulary size during infancy and 

toddlerhood, and (ii) describe polygenic association patterns with childhood behavioural and health 

measures, as well as adult cognition-related outcomes. 

Design: Meta-genome-wide association study (meta-GWAS) of expressive and receptive vocabulary (age: 

15-38 months) performed within the Early Genetics and Life Course Epidemiology (EAGLE) Consortium. 

Structural equation modelling techniques were applied to study multivariate genetic architectures. 

Setting: Children of European descent across seven independent population-based cohorts. 

Participants: 37,913 observations from 17,298 individuals. 

Main Outcome and Measure: Meta-analyses were performed for early-phase expressive vocabulary (15-18 

months), late-phase expressive vocabulary (24-38 months), late-phase receptive vocabulary (24-38 

months), and combinations thereof. Vocabulary size was assessed by parent report using standardised 

psychological instruments. 

Results: Common genetic variation explained a modest proportion of phenotypic variation across all 

vocabulary measures (Single-Nucleotide Polymorphism heritability: 0.08(SE=0.01) to 0.24(SE=0.03)). 

Genetic correlation (rg) analyses showed that late-phase expressive vocabulary largely shared genetic 

influences with both early-phase expressive (rg=0.69(SE=0.14)) and late-phase receptive vocabulary 

(rg=0.67(SE=0.16)). However, the latter two measures were genetically unrelated (rg=0.07(SE=0.10)), 
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suggesting different underlying genetic factors. Consistently, we observed differences in polygenic 

association patterns: Larger early-phase expressive vocabulary size was genetically correlated with 

increased ADHD risk (rg=0.23(SE=0.08)) and childhood maltreatment exposure (rg=0.19(SE=0.07)), a 

behavioural proxy. In contrast, larger late-phase receptive vocabulary size was genetically correlated with 

lower childhood maltreatment exposure (rg=-0.33(SE=0.08)). Finally, toddler, but not infant, vocabulary size 

was linked to cognitive skills (e.g. late-phase expressive vocabulary and intelligence: rg=0.32(SE=0.08)), 

despite comparable power.  

Conclusions and Relevance:  

There are at least two distinct genetic components contributing to vocabulary development during 

infancy and toddlerhood that shape polygenic association patterns with later-life cognition and ADHD-

related traits. Our findings suggest differences in biological mechanisms during a phase where children 

“learn to speak” (infancy) compared to a phase where children mastered some fluency and “speak to learn” 

(toddlerhood).  
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Introduction 

Language development in infants and toddlers is often assessed with measures of expressive and 

receptive vocabulary1,2. These constructs relate to language production and understanding, respectively, 

and can be relatively easily (albeit indirectly) measured through parental reports. The first spoken words, 

representing one of the milestones in language development, typically emerge between the ages of 10 to 

15 months2. Receptive vocabulary development, usually, precedes expressive vocabulary development, 

emerging at six to nine months of age3. Consequently, the number of words children understand is often 

larger than the number of words they produce, and exceeds the latter at least four-fold based on parent-

reported measures at 16 months of age4. Once children reach an expressive vocabulary size of ~50 words 

at an age of 12 to 18 months, there is often a period of rapid vocabulary growth around 16 to 22 months 

of age5, resulting in a vocabulary size of 100 to 600 words at ~24 months4. During the early stages of 

language learning in infancy (≤18 months of age) children typically produce words in isolation2, followed by 

a period of two-word combinations and more complex grammatical structures4,6.  

Individual differences in early-life vocabulary development can, partially, be explained by genetic 

factors7–10. Twin heritability (twin-h2) estimates for expressive vocabulary range between 10% and 25% (24-

36 months)7–9, reflecting phenotypic variation due to all possible genetic influences. These findings are 

corroborated by genetic research investigating Single-Nucleotide Polymorphisms (SNPs), with SNP-h2 

estimates of 13% and 14% (15-30 months)7. For receptive vocabulary at 14 months of age, a twin-h2 

estimate of 28% has been reported11. Evidence for SNP-h2 at a similar age was poor12, based on a single-

cohort study, but was present at 38 months of age (12% SNP-h2)12.  

Population-based studies of English-speaking children showed that the genetic architecture of 

language development spanning infancy to early childhood is complex, with evidence for both stability and 

change in underlying genetic contributions7,8,12,13. At the genome-wide level, genetic correlations (rg) for 

measures of expressive vocabulary between 15 and 38 months of age ranged from 0.48 to 0.747,8,12, 
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suggesting moderate-to-strong genetic stability. At the individual SNP-level, a previous meta-genome-wide 

association study (meta-GWAS, N=8,889) identified a GWAS signal at rs7642482 on chromosome 3p12.3, 

near the ROBO2 gene7 that was associated with expressive vocabulary in infants (age: 15-18 months) but 

attenuated in toddlers (age: 24-30 months)7. These changes might be due to age-specific genetic 

mechanisms, highlighting the need for more powerful studies to identify and characterise genetic 

association.  

Genetic influences underlying early-life vocabulary are shared with many later childhood abilities. 

In UK twins, for example, early expressive language skills (24-48 months) were moderately genetically 

correlated (rg=0.36) with childhood reading abilities13. Similarly, in a UK population-based genomic study, 

receptive vocabulary scores (38 months) showed moderate-to-strong genetic correlations (rg=0.58-0.92) 

with mid-childhood reading skills14. Genetic influences underlying early-life vocabulary may also be shared 

with other childhood behavioural and health measures, including childhood-onset neurodevelopmental 

conditions as Attention-Deficit/Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD). For 

example, children with ADHD often experience difficulties with mastering language and literacy skills15–17 

and poor language skills at the age of three years were found to be predictive of inattention and hyperactive 

symptoms two years later in life18. More specifically, there is evidence for genetic overlap between higher 

ADHD risk and lower mid-childhood/early-adolescent language- and literacy-related abilities, primarily 

implicating reading performance19–22, underscoring the need to study also genetic links with early-life 

language measures. For children diagnosed with ASD, the phenotypic spectrum is wider, including children 

with little or no spontaneous spoken language by the time they reach school age23 as well as individuals 

with, comparably, few problems in the language domain24. Both, children with ADHD and ASD are at 

increased risk for childhood maltreatment compared to typically developing children25,26, consistent with 

moderate genetic trait correlations (ADHD: rg=0.56, ASD: rg=0.41)27. Such genetic relationships may capture 

gene-environment correlation, as children’s behaviour (partially influenced by genetic factors) elicits 
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responses from parents and others27. In addition, we assess evidence for genetic links between children’s 

vocabulary and head circumference measures, a characteristic that may indicate abnormal development28 

and is highly correlated with MRI brain volume29,30.  

In this study, we aim to elucidate the polygenic architecture of vocabulary acquisition. We 

investigate developmental changes in genetic contributions at the single-variant and trait covariance level 

by performing genome-wide association meta-analyses of expressive and receptive vocabulary size at 

different developmental stages during infancy and toddlerhood, including an early, single-word phase (15-

18 months) and a late (24-38 months) phase during which children start using two-word combinations and 

more complex grammatical structures. Furthermore, we characterise polygenic links with childhood 

behavioural and health measures, as well as adult cognition-related outcomes, fitting structural models.  

 

Methods 

Phenotype selection and study design 

Cohorts with quantitative vocabulary scores assessed during the first three years of life and 

genome-wide genotypes were invited to participate in this study, embedded within the Early Genetics and 

Life Course Epidemiology (EAGLE) consortium31 (https://www.eagle-consortium.org/working-

groups/behaviour-and-cognition/early-language/). Expressive vocabulary scores were assessed between 

15 and 38 months of age and analysed across two developmental stages to allow for age-specific genetic 

influences: an early phase (15-18 months) and a late phase (24-38 months). Scores for receptive vocabulary 

were included for the late phase only (24-38 months), due to low measurement availability, low reliability 

and little evidence for SNP-h2 during the early phase12 (eMethods 1).  

Up to seven population-based cohorts (eMethods 2) participated in the meta-analyses, of which 

two had longitudinal vocabulary assessments (Figure 1, eTable 1). Vocabulary scores were ascertained by 
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parental report using age-specific word lists that were adapted from the MacArthur Communicative 

Development Inventory (CDI)9,32–36 or the Language Development Survey (LDS)37 (eTable 1, eMethods 3). 

Ethical approval was obtained by the local research ethics committee for each participating study, and all 

parents and/or legal guardians provided written informed consent (eMethods 2).  

 

Genotyping and imputation 

Genotyping within each cohort was conducted using high-density SNP arrays and quality control 

followed standard procedures38 (eTable 2). In total, between 440,476 and 608,517 high-quality autosomal 

genotyped markers were imputed against a Haplotype Reference Consortium (HRC) r1.1 panel39 (eTable 2).  

 

Single variant association analyses and meta-analyses 

Within each cohort, vocabulary scores were adjusted for potential covariates and rank-

transformed to achieve normality and to allow for comparisons of genetic association effects across 

different psychological instruments (eMethods 4). SNP-vocabulary associations were then estimated within 

each cohort using linear regression of rank-transformed residuals on posterior genotype probability, except 

for the Longitudinal Study of Australian Children (LSAC) where we analysed best-guess genotypes, assuming 

an additive genetic model (eTable 2, eMethods 4). Prior to meta-analysis, GWAS summary statistics 

underwent extensive quality control using the EasyQC R package40 (v9.2) (eTable 2, eMethods 4).  

As part of analysis stage I, single-trait meta-analyses were performed for early-phase expressive 

vocabulary, late-phase expressive vocabulary and late-phase receptive vocabulary using either METAL41 

and/or multi-trait analysis of genome-wide association (MTAG)42 software (Figure 1, eMethods 4). As part 

of analysis stage II, multi-trait meta-analyses were performed with MTAG42 combining genetically 

correlated vocabulary traits to increase statistical power (Figure 1).  
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The number of independent vocabulary measures analysed in this study was 2.38, as estimated 

with a Matrix Spectral Decomposition (matSpD)43 based on bivariate genetic correlations (see below) across 

the three single-trait vocabulary meta-analyses (stage I). This resulted in a multiple-testing-adjusted 

genome-wide association significance threshold of P<2.10x10-8 (5x10-8/2.38).  

 

FUMA analyses 

SNP-vocabulary associations passing the unadjusted genome-wide significance threshold (P<5x10-

8) were identified and annotated using Functional Mapping and Annotation of genetic associations44 

software (FUMA v1.3.6). In addition, gene-based genome-wide, gene-set and gene-property analyses were 

conducted with Multi-marker Analysis of GenoMic Annotation (MAGMA, v1.08) within FUMA44 (v1.3.6a) 

(eMethods 5). 

 

SNP-heritability and genetic relationship analyses 

Using GWAS summary statistics, SNP-h2 and bivariate genetic correlations (rg) were estimated for 

early-life vocabulary (meta-analysis stages I and II) and/or later-life traits using High-Definition Likelihood45 

(HDL, eMethods 6, see below).  

Given evidence of HDL-SNP-h2 (P<0.05), HDL-rg analyses (eMethods 6) were performed to assess 

genetic overlap (i) across single-trait vocabulary measures (stage I) and (ii) across early-life vocabulary 

measures and later-life health-, cognition-, and behaviour-related outcomes (eMethods 6): reading 

performance in the general population (8-22 years, N=13,027; GWAS summary statistics were created as 

described in eMethods 7, eTable 3), intelligence46 (5-98 years, N=279,930), educational attainment47 (>30 

years, N=766,345), infant head circumference48 (6-30 months, N=10,768), childhood head circumference49 

(6-9 years, N=10,600), childhood aggressive behaviour50 (1.5-18 years, N=151,741), childhood internalising 
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symptoms51 (3-18 years, N=64,641), childhood maltreatment exposure52 (<18 years, N=150,290), ADHD53 

(N=53,293; Ncases=19,099) and ASD54 (N=46,350; Ncases=18,381). The multiple-testing-adjusted threshold for 

HDL-rg analyses was defined at 5.32x10-3, reflecting a correction for 9.39 independent traits considered 

(0.05/9.39), estimated using matSpD43,55 and a bivariate genetic correlation matrix (eFigure 1).  

Polygenic prediction of late-phase expressive vocabulary was carried out using polygenic scoring56 

(eMethods 8).  

 

Structural equation models 

We modelled the multivariate genetic architecture between early-life vocabulary measures and 

genetically associated later-life outcomes (as identified with HDL-rg analyses, P<5.32x10-3) using genomic 

structural equation modelling (genomic SEM)57 and genome-wide summary statistics (eMethods 9). Follow-

up analyses of phenotypic, genetic and residual correlations of mid-childhood and early adolescent ADHD 

symptoms with infant and toddler vocabulary measures were performed using individual-level data from 

the Avon Longitudinal Study of Parents And Children (ALSPAC) cohort and genetic-relationship-matrix 

structural equation modelling58 (GRM-SEM) (eMethods 10, eTable 4).  

 

Results 

Single-trait and multi-trait meta-GWAS 

Single-trait genome-wide association analyses based on children of European descent from seven 

independent cohorts were performed for early-phase expressive vocabulary (15-18 months, N=8,799), late-

phase expressive vocabulary (24-38 months, N=16,615) and late-phase receptive vocabulary (24-38 

months, N=6,291) (stage I, Figure 1). There was little evidence for novel SNP association signals with 

vocabulary size at the multiple-testing-adjusted genome-wide significance level (P<2.10x10-8, eFigure 2a-
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c). For early-phase expressive vocabulary, a single GWAS signal passed the unadjusted genome-wide 

significance threshold (rs9854781, P<5x10-8), consistent with a known locus (rs764282, LD-r2=0.78) 

identified through a previous meta-GWAS studying overlapping samples7. Genome-wide gene-based, gene-

set and gene-property analyses with MAGMA59 did not provide evidence for gene-based association 

passing the multiple-testing-adjusted significance thresholds (eFigure 3, eTable 5).  

All vocabulary measures were modestly heritable (Figure 2a, eTable 6), with SNP-h2 estimates of 

0.24(SE=0.02), 0.08(SE=0.01), and 0.20(SE=0.04) for early-phase expressive vocabulary, late-phase 

expressive vocabulary, and late-phase receptive vocabulary, respectively. Given limited data availability, 

polygenic prediction (out of the meta-analysis samples) was carried out for late-phase expressive 

vocabulary only (β=0.04(SE=0.04), P=0.35, R2=0.14%), though power was low (≤0.11) due to a combination 

of low SNP-h2 and low target sample size (N=639). In contrast, genetic correlations between early- and late-

phase expressive vocabulary (rg=0.69(SE=0.14)), as well as between late-phase expressive and receptive 

vocabulary (rg=0.67(SE=0.16)) were moderate (Figure 2b), suggesting some stability in genetic factors 

during development. Genetic influences underlying early-phase expressive vocabulary were, however, 

largely independent of genetic influences related to late-phase receptive vocabulary (rg=0.07(SE=0.10)). 

Given comparable power to detect rg=0.70 with late-phase receptive vocabulary for both expressive 

vocabulary measures (power: early-phase=0.83, late-phase=0.71), these findings suggest developmental 

genetic heterogeneity.  

To maximise power for single-variant discovery, genetically correlated vocabulary measures were 

combined as part of two multi-trait meta-analyses using MTAG (stage II, Figure 1, eTable 7). However, we 

neither identified further SNP-vocabulary associations (eFigure 2d-e) nor increased evidence for SNP-h2 (Z-

scores, Figure 2a, eTable 6).  
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Genetic relationships with later-life outcomes  

We investigated genetic links between vocabulary traits (stage I) and multiple heritable health-, 

cognition-, and behaviour-related traits, especially during childhood (see eTable 8 for SNP-h2) by estimating 

HDL genetic correlations45 (multiple-testing-adjusted threshold: P<5.32x10-3). Consistent with the 

identified heterogeneous genetic architecture (see above), polygenic association patterns were highly 

divergent for early-phase and late-phase vocabulary (Figure 3a). Larger early-phase expressive vocabulary 

size was genetically correlated with increased ADHD risk (rg=0.23(SE=0.08)), exposure to childhood 

maltreatment (rg=0.19(SE=0.07)) and, at the nominal level (P<0.05), childhood aggressive behaviour 

(rg=0.42(SE=0.16)). The direction of the association effect reversed, however, in toddlerhood, such that 

lower late-phase receptive vocabulary size was genetically related to increased childhood maltreatment 

exposure (rg=-0.33(SE=0.08)). In addition, genetic links with cognition-related later-life outcomes became 

detectable in toddlerhood only (Figure 3a), despite comparable power estimates across infant and toddler 

measures (eTable 9). Both, larger late-phase expressive and receptive vocabulary size were genetically 

correlated with higher intelligence across the lifespan (late-phase expressive vocabulary: rg=0.32(SE=0.08); 

late-phase receptive vocabulary: rg=0.36(SE=0.12)) and higher educational attainment (late-phase 

expressive vocabulary: rg=0.26(SE=0.05); late-phase receptive vocabulary: rg=0.37(SE=0.06)).  

To integrate genetic covariance patterns into a structural model, we adopted a genomic SEM57 

approach that was informed by exploratory factor analyses (eTable 10). Specifically, we studied all three 

early-life vocabulary measures and genetically correlated later-life traits (HDL-rg-P<5.32x10-3: intelligence, 

educational attainment, exposure to childhood maltreatment and ADHD). The best-fitting model was a 

correlated 3-factor model (Figure 3b, eTable 11), implicating two uncorrelated genomic dimensionalities. 

For comparison with estimates presented above, we report, here, unstandardised factor loadings, 

representing the direction and strength of association between a trait and model-implied latent genetic 

factor: The first genetic factor (F1g) reflected shared genetic influences between early-phase 
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(λ=0.25(SE=0.09)) and late-phase expressive vocabulary (λ=0.31(SE=0.10)). This factor was modestly 

correlated (rg=0.25(SE=0.09)) with a second genetic factor (F2g) accounting for the majority of genetic 

variance in educational attainment (λ=0.33(SE=0.01)) and intelligence (λ=0.32(SE=0.01)). The third genetic 

factor (F3g), which was, largely, independent of F1g (rg=-0.09(SE=0.09)), captured the entirety of genetic 

ADHD liability (λ=0.48(SE=0.04)) and, to a lesser extent, genetic influences contributing to childhood 

maltreatment exposure (λ=0.13(SE=0.01)). Notably, early-phase expressive (λ=0.16(SE=0.12)) and late-

phase receptive (λ=-0.19(SE=0.04)) vocabulary were associated with this factor with an opposite direction 

of effect. While, largely, consistent with reported SNP-h2 estimates and genetic relationships above (Figure 

2, 3a), the identified model structure lacked genetic overlap between late-phase expressive and receptive 

vocabulary (eTable 12), underlining the limitations of the model.  

To confirm the change in genetic association pattern with direct genotyping data, we studied 

children of the ALSPAC cohort with genetic, vocabulary and ADHD symptom information and modelled 

jointly the phenotypic (rp), genetic (rg) and residual (re) correlations fitting a saturated (Cholesky) structural 

model using GRM-SEM58 (eMethods 10). Genetic correlations in ALSPAC (eFigure 4) had the same direction 

of effect as meta-analytic HDL-derived estimates (Figure 3a), underlining the robustness of our findings. 

However, 95%-confidence intervals (CIs) were wide and analyses have, thus, an exploratory character only. 

Increased ADHD symptoms were phenotypically very modestly correlated with smaller vocabulary size (rp=-

0.06(SE=0.02)), irrespective of developmental stage (eFigure 4). Thus, during infancy only, genetic 

correlations (rg=0.51(SE=0.26)) may have been masked by opposite residual correlations (re=-

0.18(SE=0.06)). 
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Discussion 

Here, we present findings from genome-wide association meta-analyses of expressive and 

receptive vocabulary size across infancy and toddlerhood. Genomic covariance analyses revealed 

heterogeneity within the genetic architecture underlying vocabulary size across different developmental 

stages that matched distinct polygenic association patterns with cognitive and behaviour-related traits 

during later life.  

Bivariate genetic correlation patterns and structural models suggested two independent genetic 

factors contributing to early-life vocabulary size, confirming the heterogeneous multivariate genetic 

architecture observed in previous reports7,8,12,13. Both factors may reflect aetiological differences in 

vocabulary acquisition stages, given limited genetic overlap between infant expressive and toddler 

receptive vocabulary size. Genetic influences contributing to utterances in infancy, approximated by early-

phase expressive vocabulary size (15-18 months), may capture the first stages of language learning related 

to emerging speech, where words are usually produced in isolation2. During this phase of “learning to 

speak”, children acquire phonological skills to identify phonemes and sequences from speech and store 

them for future production60, but also develop oral motor61 and speech motor skills62. Despite sufficient 

power, there was little evidence for genetic overlap between early-phase vocabulary scores and later-life 

cognition. Such an association only emerged for late-phase vocabulary scores during toddlerhood (24-38 

months), in line with previous work12 and suggested specificity. The genetic overlap with cognition may 

reflect the onset of a phase of “speaking to learn”, where toddlers have mastered some language fluency 

and start to use word combinations and more complex grammatical structures4,6. Together, our findings 

highlight rapid changes in the genetic architecture of vocabulary acquisition across a period of only two 

years, even when assessed with similar psychological instruments. Shared genetic influences across both 

developmental phases underline the dynamic character of this process, illustrated by the genetic overlap 

of late-phase expressive vocabulary with both, early-phase expressive and late-phase receptive vocabulary.  
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The heterogeneity in genetic components contributing to vocabulary acquisition was further 

reflected by distinct polygenic association patterns with later-life behaviour and related proxies. Larger 

infant expressive but lower toddler receptive vocabulary size was genetically correlated with increased 

ADHD risk and/or childhood maltreatment exposure. Consistently, younger age at first walking, another 

early developmental milestone, has been linked to higher polygenic ADHD risk63. During a developmental 

phase of “learning to speak”, potentially involving motor skills that shape children’s learning environment 

and, in turn, behaviour and language learning64, children with a higher genetic predisposition for ADHD may 

show larger rather than smaller vocabulary size. In contrast, the direction of genetic overlap between ADHD 

risk and toddler receptive vocabulary is consistent with the known inverse polygenic association pattern of 

ADHD risk with child/adolescent verbal and cognitive abilities22. Genetic links implicating ADHD and 

childhood maltreatment exposure were similar, reflecting the genetic trait overlap27.  

This work builds on a previous GWAS effort7 by increasing the number of studied children by ~50% 

and adopting a multivariate analysis approach to maximise statistical power while extending the studied 

phenotypic vocabulary spectrum. However, the power to detect single variant contributions of small effect 

(e.g. 0.1%) remained low (eMethods 4), especially for receptive vocabulary. Given limited data availability, 

the study focussed also exclusively on European children and languages. Furthermore, to harmonise 

vocabulary measures across different developmental stages and instruments, all measures had to be rank-

transformed. Finally, although structural models built from genetic summary statistics had an acceptable 

model fit, the model could not capture all aspects of the underlying multivariate genetic architecture, 

limiting its interpretation. Future studies may increase the sample size further and boost study power 

through multivariate analysis of vocabulary with genetically related aspects of language, such as 

grammatical abilities8,9, preferably in genetically diverse populations. 

In summary, there are at least two distinct genetic factors contributing to vocabulary size during 

infancy and toddlerhood that match distinct polygenic association patterns with later-life outcomes. Our 
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findings highlight the importance of studying genetic influences underlying early-life vocabulary acquisition 

to unravel the aetiological processes that shape future behaviour, health and cognition. 
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Figure 1: Meta-analysis study design 

Vocabulary scores were assessed between 15-38 months of age and divided into an early phase (15-18 months) and 
late phase (24-38 months) of language acquisition allowing for age-specific genetic influences. Scores for receptive 
vocabulary were included in the late-phase only. In stage I, three single-trait meta-analyses were conducted: early-
phase expressive vocabulary, late-phase expressive vocabulary and late-phase receptive vocabulary. In stage II, multi-
trait genome-wide analyses were performed across early-phase and late-phase expressive vocabulary, as well as 
across late-phase expressive and receptive vocabulary to increase statistical power.  

ǂ Estimated sample size based on the increase in mean χ2 statistic using multi-trait analysis of genome-wide 
association. 

Abbreviations: ALSPAC, Avon Longitudinal Study of Parents and Children; BIS, Barwon Infant Study; CDI, 
Communicative Development Inventory; COPSAC, Copenhagen Prospective Studies on Asthma in Childhood; EV, 
expressive vocabulary; ERV, expressive and receptive vocabulary; GenR, Generation R Study; LDS; Language 
Development Survey; LSAC, Longitudinal Study of Australian Children; MA, meta-analysis; RV, receptive vocabulary; 
TEDS, Twins Early Development Study 
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Figure 2: SNP-heritability and genetic correlations of vocabulary traits 

(a) SNP-heritability estimates for single- and multi-trait vocabulary summary statistics were estimated with High-
Definition Likelihood45 software. Error bars represent standard errors. (b) Genetic correlations (rg) among single-trait 
vocabulary summary statistics were estimated with High-Definition Likelihood45 software. Corresponding standard 
errors are shown in brackets.  

Abbreviations: EV, expressive vocabulary; ERV; expressive and receptive vocabulary; MA, meta-analyses; RV, receptive 
vocabulary; SNP-h2, Single-Nucleotide Polymorphism heritability 
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Figure 3: Genetic relationships of vocabulary with several later-life cognitive, health and behavioural 
outcomes 

(a) Genetic correlations (rg) were estimated using summary statistics and High-Definition Likelihood (HDL)45. Bars 
represent standard errors. ** multiple-testing adjusted P<5.32x10-3; * P<0.05. (b) Three-factor model fitted to genetic 
covariance patterns of early-life vocabulary measures and genetically correlated later-life outcomes (identified with 
HDL, P(rg)<5.32x10-3) using Genomic SEM57. Solid and dashed arrow lines represent factor loadings with P<0.05 and 
P≥0.05, respectively. Unstandardised factor loadings are shown, with standard error in parenthesis. Model fit 
characteristics are provided in eTable 11. 

Abbreviations: ADHD, Attention-Deficit/Hyperactivity Disorder; AGG, aggression; ASD, Autism Spectrum Disorder; EA, 
educational attainment; EV, expressive vocabulary; HC, head circumference; INT, internalising symptoms; IQ, general 
intelligence; M, months; MALTR, maltreatment; RV, receptive vocabulary; SDQ, Strengths and Difficulties 
Questionnaire; Y, years 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 1, 2022. ; https://doi.org/10.1101/2022.06.01.494306doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.01.494306
http://creativecommons.org/licenses/by-nc-nd/4.0/

