163 research outputs found

    RNAome sequencing delineates the complete RNA landscape

    Get PDF
    Standard RNA expression profiling methods rely on enrichment steps for specific RNA classes, thereby not detecting all RNA species. For example, small and large RNAs from the same sample cannot be sequenced in a single sequence run. We designed RNAome sequencing, which is a strand-specific method to determine the expression of small and large RNAs from ribosomal RNA-depleted total RNA in a single sequence run. RNAome sequencing quantitatively preserves all RNA classes. This characteristic allows comparisons between RNA classes, thereby facilitating relationships between different RNA classes. Here, we describe in detail the experimental procedure associated with RNAome sequencing published by Derks and colleagues in RNA Biology (2015) [1]. We also provide the R code for the developed Total Rna Analysis Pipeline (TRAP), an algorithm to analyze RNAome sequencing datasets (deposited at the Gene Expression Omnibus data repository, accession number GSE48084)

    miR-634 restores drug sensitivity in resistant ovarian cancer cells by targeting the Ras-MAPK pathway

    Get PDF
    Background: Drug resistance hampers the efficient treatment of malignancies, including advanced stage ovarian cancer, which has a 5-year survival rate of only 30 %. The molecular processes underlying resistance have been extensively studied, however, not much is known about the involvement of microRNAs. Methods: Differentially expressed microRNAs between cisplatin sensitive and resistant cancer cell line pairs were determined using microarrays. Mimics were used to study the role of microRNAs in drug sensitivity of ovarian cancer cell lines and patient derived tumor cells. Luciferase reporter constructs were used to establish regulation of target genes by microRNAs. Results: MiR-634 downregulation was associated with cisplatin resistance. Overexpression of miR-634 affected cell cycle progression and enhanced apoptosis in ovarian cancer cells. miR-634 resensitized resistant ovarian cancer cell lines and patient derived drug resistant tumor cells to cisplatin. Similarly, miR-634 enhanced the response to carboplatin and doxorubicin, but not to paclitaxel. The cell cycle regulator CCND1, and Ras-MAPK pathway components GRB2, ERK2 and RSK2 were directly repressed by miR-634 overexpression. Repression of the Ras-MAPK pathway using a MEK inhibitor phenocopied the miR-634 effects on viability and chemosensitivity. Conclusion:miR-634 levels determine chemosensitivity in ovarian cancer cells. We identify miR-634 as a therapeutic candidate to resensitize chemotherapy resistant ovarian tumors

    Comprehensive microRNA profiling in B-cells of human centenarians by massively parallel sequencing

    Get PDF
    Background: MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression and play a critical role in development, homeostasis, and disease. Despite their demonstrated roles in age-associated pathologies, little is known about the role of miRNAs in human aging and longevity.Results: We employed massively parallel sequencing technology to identify miRNAs expressed in B-cells from Ashkenazi Jewish centenarians, i.e., those living to a hundred and a human model of exceptional longevity, and younger controls without a family history of longevity. With data from 26.7 million read

    Developmental and Activity-Dependent miRNA Expression Profiling in Primary Hippocampal Neuron Cultures

    Get PDF
    MicroRNAs (miRNAs) are evolutionarily conserved non-coding RNAs of ∼22 nucleotides that regulate gene expression at the level of translation and play vital roles in hippocampal neuron development, function and plasticity. Here, we performed a systematic and in-depth analysis of miRNA expression profiles in cultured hippocampal neurons during development and after induction of neuronal activity. MiRNA profiling of primary hippocampal cultures was carried out using locked nucleic-acid-based miRNA arrays. The expression of 264 different miRNAs was tested in young neurons, at various developmental stages (stage 2-4) and in mature fully differentiated neurons (stage 5) following the induction of neuronal activity using chemical stimulation protocols. We identified 210 miRNAs in mature hippocampal neurons; the expression of most neuronal miRNAs is low at early stages of development and steadily increases during neuronal differentiation. We found a specific subset of 14 miRNAs with reduced expression at stage 3 and showed that sustained expression of these miRNAs stimulates axonal outgrowth. Expression profiling following induction of neuronal activity demonstrates that 51 miRNAs, including miR-134, miR-146, miR-181, miR-185, miR-191 and miR-200a show altered patterns of expression after NMDA receptor-dependent plasticity, and 31 miRNAs, including miR-107, miR-134, miR-470 and miR-546 were upregulated by homeostatic plasticity protocols. Our results indicate that specific miRNA expression profiles correlate with changes in neuronal development and neuronal activity. Identification and characterization of miRNA targets may further elucidate translational control mechanisms involved in hippocampal development, differentiation and activity-depended processes

    Attenuated XPC expression is not associated with impaired DNA repair in bladder cancer

    Get PDF
    Bladder cancer has a high incidence with significant morbidity and mortality. Attenuated expression of the DNA damage response protein Xeroderma Pigmentosum complementation group C (XPC) has been described in bladder cancer. XPC plays an essential role as the main initiator and damage-detector in global genome nucleotide excision repair (NER) of UV-induced lesions, bulky DNA adducts and intrastrand crosslinks, such as those made by the chemotherapeutic agent Cisplatin. Hence, XPC protein might be an informative biomarker to guide personalized therapy strategies in a subset of bladder cancer cases. Therefore, we measured the XPC protein expression level and functional NER activity of 36 bladder tumors in a standardized manner. We optimized conditions for dissociation and in vitro culture of primary bladder cancer cells and confirmed attenuated XPC expression in approximately 40% of the tumors. However, NER activity was similar to co-cultured wild type cells in all but one of 36 bladder tumors. We conclude, that (i) functional NER deficiency is a relatively rare phenomenon in bladder cancer and (ii) XPC protein levels are not useful as biomarker for NER activity in these tumors

    MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation

    Get PDF
    MicroRNAs (miRNAs) are non-protein coding molecules with important regulatory functions; many have tissue-specific expression patterns. Their very small size in principle makes them less prone to degradation processes, unlike messenger RNAs (mRNAs), which were previously proposed as molecular tools for forensic body fluid identification. To identify suitable miRNA markers for forensic body fluid identification, we first screened total RNA samples derived from saliva, semen, vaginal secretion, and venous and menstrual blood for the expression of 718 human miRNAs using a microarray platform. All body fluids could be easily distinguished from each other on the basis of complete array-based miRNA expression profiles. Results from quantitative reverse transcription PCR (RT-PCR; TaqMan) assays for microarray candidate markers confirmed strong over-expression in the targeting body fluid of several miRNAs for venous blood and several others for semen. However, no candidate markers from array experiments for other body fluids such as saliva, vaginal secretion, or menstrual blood could be confirmed by RT-PCR. Time-wise degradation of venous blood and semen stains for at least 1 year under lab conditions did not significantly affect the detection sensitivity of the identified miRNA markers. The detection limit of the TaqMan assays tested for selected venous blood and semen miRNA markers required only subpicogram amounts of total RNA per single RT-PCR test, which is considerably less than usually needed for reliable mRNA RT-PCR detection. We therefore propose the application of several stable miRNA markers for the forensic identification of blood stains and several others for semen stain identification, using commercially available TaqMan assays. Additional work remains necessary in search for suitable miRNA markers for other forensically relevant body fluids

    Organoids derived from neoadjuvant FOLFIRINOX patients recapitulate therapy resistance in pancreatic ductal adenocarcinoma

    Get PDF
    Purpose: We investigated whether organoids can be generated from resected tumors of patients who received eight cycles of neoadjuvant FOLFIRINOX chemotherapy before surgery, and evaluated the sensitivity/resistance of these surviving cancer cells to cancer therapy. Experimental Design: We generated a library of 10 PDAC organoid lines: five each from treatment-naive and FOLFIRINOX-treated patients. We, first, assessed the histological, genetic, and transcriptional characteristics of the organoids and their matched primary PDAC tissue. Next, the organoids' response to treatment with single agents - 5-FU, irinotecan, and oxaliplatin - of the FOLFIRINOX regimen as well as combined regimen was evaluated. Finally, global mRNA-seq analyses were performed to identify FOLFIRINOX resistance pathways. Results: All 10 patient-derived PDAC organoids recapitulate histological, genetic, and transcriptional characteristics of their primary tumor tissue. Neoadjuvant FOLFIRINOXtreated organoids display resistance to FOLFIRINOX (5/5), irinotecan (5/5) and oxaliplatin (4/5) when compared to treatment-naive organoids (FOLFIRINOX: 1/5, irinotecan: 2/5, oxaliplatin: 0/5). 5-FU treatment responses between naive and treated organoids were similar. Comparative global transcriptome analysis of treatment-naive and FOLFIRINOX samples - in both organoids and corresponding matched tumor tissues - uncovered modulated pathways mainly involved in genomic instability, energy metabolism, and innate immune system. Conclusion: Resistance development in neoadjuvant FOLFIRINOX organoids, recapitulating their primary tumor resistance, suggests continuation of FOLFIRINOX therapy as an adjuvant treatment may not be advantageous for these patients. Gene expression profiles of PDAC organoids identify targetable pathways involved in chemoresistance development upon neoadjuvant FOLFIRINOX treatment, thus opening up combination therapy possibilities.Genome Instability and Cance

    Understanding and Managing Discolouration Risk in Trunk Mains

    Get PDF
    There is currently no accepted concept or approach for understanding and controlling discolouration risk associated with trunk mains. This paper assesses the applicability of cohesive layer theories to manage discolouration and a modelling tool that describes the process of particulate material accumulation. Results are presented from independent field experiments across the UK and internationally that evidence hydraulically induced mobilisation, or effectively cleaning, once imposed system shear stress exceeds normal conditions. Model calibration to measured data validates the cohesive layer concept with transferability in empirically derived parameters demonstrating a viable operational planning tool. The experiments highlight the accumulation of material layers as a continuous and ubiquitous process, such that fully clean pipes can never exist and helping explain how discolouration risk changes over time. A major practical implication of the novel understanding demonstrated in this paper is that discolouration risk in trunk mains can be simply managed by pro-active strategies that regularly vary the hydraulic conditions. This avoids the need for disruptive and expensive out of service invasive interventions yet offers operators a cost-effective long-term strategy to safeguard water quality

    In vivo Recording Quality of Mechanically Decoupled Floating Versus Skull-Fixed Silicon-Based Neural Probes

    Get PDF
    Throughout the past decade, silicon-based neural probes have become a driving force in neural engineering. Such probes comprise sophisticated, integrated CMOS electronics which provide a large number of recording sites along slender probe shanks. Using such neural probes in a chronic setting often requires them to be mechanically anchored with respect to the skull. However, any relative motion between brain and implant causes recording instabilities and tissue responses such as glial scarring, thereby shielding recordable neurons from the recording sites integrated on the probe and thus decreasing the signal quality. In the current work, we present a comparison of results obtained using mechanically fixed and floating silicon neural probes chronically implanted into the cortex of a non-human primate. We demonstrate that the neural signal quality estimated by the quality of the spiking and local field potential (LFP) recordings over time is initially superior for the floating probe compared to the fixed device. Nonetheless, the skull-fixed probe also allowed long-term recording of multi-unit activity (MUA) and low frequency signals over several months, especially once pulsations of the brain were properly controlled

    Reliability analysis of the Ahringer Caenorhabditis elegans RNAi feeding library: a guide for genome-wide screens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Ahringer <it>C. elegans </it>RNAi feeding library prepared by cloning genomic DNA fragments has been widely used in genome-wide analysis of gene function. However, the library has not been thoroughly validated by direct sequencing, and there are potential errors, including: 1) mis-annotation (the clone with the retired gene name should be remapped to the actual target gene); 2) nonspecific PCR amplification; 3) cross-RNAi; 4) mis-operation such as sample loading error, <it>etc</it>.</p> <p>Results</p> <p>Here we performed a reliability analysis on the Ahringer <it>C. elegans </it>RNAi feeding library, which contains 16,256 bacterial strains, using a bioinformatics approach. Results demonstrated that most (98.3%) of the bacterial strains in the library are reliable. However, we also found that 2,851 (17.54%) bacterial strains need to be re-annotated even they are reliable. Most of these bacterial strains are the clones having the retired gene names. Besides, 28 strains are grouped into unreliable category and 226 strains are marginal because of probably expressing unrelated double-stranded RNAs (dsRNAs). The accuracy of the prediction was further confirmed by direct sequencing analysis of 496 bacterial strains. Finally, a freely accessible database named CelRNAi (<url>http://biocompute.bmi.ac.cn/CelRNAi/</url>) was developed as a valuable complement resource for the feeding RNAi library by providing the predicted information on all bacterial strains. Moreover, submission of the direct sequencing result or any other annotations for the bacterial strains to the database are allowed and will be integrated into the CelRNAi database to improve the accuracy of the library. In addition, we provide five candidate primer sets for each of the unreliable and marginal bacterial strains for users to construct an alternative vector for their own RNAi studies.</p> <p>Conclusions</p> <p>Because of the potential unreliability of the Ahringer <it>C. elegans </it>RNAi feeding library, we strongly suggest the user examine the reliability information of the bacterial strains in the CelRNAi database before performing RNAi experiments, as well as the post-RNAi experiment analysis.</p
    corecore