789 research outputs found

    Technology assessment of portable energy RDT and P

    Get PDF
    Results are presented of a workshop conducted to assess portable energy technology. The results were evaluated and areas for future research were considered. Several research categories were studied: increasing presently available fuel supplies, developing new fuel sources, utilization of new transportation fuels, improving conservation practices, and equitable distribution of fuel supplies. Several research projects were proposed, and work statements were constructed for those considered suitable

    The Mid-IR Spectral Effects of Darkening Agents and Porosity on the Silicate Surface Features of Airless Bodies

    Get PDF
    We systematically measured the mid-IR spectra of different mixtures of three silicates (antigorite, lizardite, and pure silica) with varying effective porosities and amounts of darkening agent (iron oxide and carbon). These spectra have broad implications for interpretation of current and future mission data for airless bodies, as well as for testing the capabilities of new instruments. Serpentines, such as antigorite and lizardite, are common to airless surfaces, and their mid-IR spectra in the presence of darkening agents and different surface porosities would be typical for those measured by spacecraft. Silica has only been measured in the plumes of Enceladus and presents exciting possibilities for other Saturn-system surfaces due to long range transport of E-ring material. Results show that the addition of the IR-transparent salt, KBr, to simulate surface porosity affected silicate spectra in ways that were not predictable from linear mixing models. The strengthening of silicate bands with increasing pore space, even when only trace amounts of KBr were added, indicates that spectral features of porous surfaces are more detectable in the mid-IR. Combining iron oxide with the pure silicates seemed to flatten most of the silicate features, but strengthened the reststrahlen band of the silica. Incorporating carbon with the silicates weakened all silicate features, but the silica bands were more resistant to being diminished, indicating silica may be more detectable in the mid-IR than the serpentines. We show how incorporating darkening agents and porosity provides a more complete explanation of the mid-IR spectral features previously reported on worlds such as Iapetus

    Effects of a localized beam on the dynamics of excitable cavity solitons

    Get PDF
    We study the dynamical behavior of dissipative solitons in an optical cavity filled with a Kerr medium when a localized beam is applied on top of the homogeneous pumping. In particular, we report on the excitability regime that cavity solitons exhibits which is emergent property since the system is not locally excitable. The resulting scenario differs in an important way from the case of a purely homogeneous pump and now two different excitable regimes, both Class I, are shown. The whole scenario is presented and discussed, showing that it is organized by three codimension-2 points. Moreover, the localized beam can be used to control important features, such as the excitable threshold, improving the possibilities for the experimental observation of this phenomenon.Comment: 9 Pages, 12 figure

    Generation of scalar-tensor gravity effects in equilibrium state boson stars

    Get PDF
    Boson stars in zero-, one-, and two-node equilibrium states are modeled numerically within the framework of Scalar-Tensor Gravity. The complex scalar field is taken to be both massive and self-interacting. Configurations are formed in the case of a linear gravitational scalar coupling (the Brans-Dicke case) and a quadratic coupling which has been used previously in a cosmological context. The coupling parameters and asymptotic value for the gravitational scalar field are chosen so that the known observational constraints on Scalar-Tensor Gravity are satisfied. It is found that the constraints are so restrictive that the field equations of General Relativity and Scalar-Tensor gravity yield virtually identical solutions. We then use catastrophe theory to determine the dynamically stable configurations. It is found that the maximum mass allowed for a stable state in Scalar-Tensor gravity in the present cosmological era is essentially unchanged from that of General Relativity. We also construct boson star configurations appropriate to earlier cosmological eras and find that the maximum mass for stable states is smaller than that predicted by General Relativity, and the more so for earlier eras. However, our results also show that if the cosmological era is early enough then only states with positive binding energy can be constructed.Comment: 20 pages, RevTeX, 11 figures, to appear in Class. Quantum Grav., comments added, refs update

    A differential method for bounding the ground state energy

    Get PDF
    For a wide class of Hamiltonians, a novel method to obtain lower and upper bounds for the lowest energy is presented. Unlike perturbative or variational techniques, this method does not involve the computation of any integral (a normalisation factor or a matrix element). It just requires the determination of the absolute minimum and maximum in the whole configuration space of the local energy associated with a normalisable trial function (the calculation of the norm is not needed). After a general introduction, the method is applied to three non-integrable systems: the asymmetric annular billiard, the many-body spinless Coulombian problem, the hydrogen atom in a constant and uniform magnetic field. Being more sensitive than the variational methods to any local perturbation of the trial function, this method can used to systematically improve the energy bounds with a local skilled analysis; an algorithm relying on this method can therefore be constructed and an explicit example for a one-dimensional problem is given.Comment: Accepted for publication in Journal of Physics

    Resonances in a spring-pendulum: algorithms for equivariant singularity theory

    Get PDF
    A spring-pendulum in resonance is a time-independent Hamiltonian model system for formal reduction to one degree of freedom, where some symmetry (reversibility) is maintained. The reduction is handled by equivariant singularity theory with a distinguished parameter, yielding an integrable approximation of the Poincaré map. This makes a concise description of certain bifurcations possible. The computation of reparametrizations from normal form to the actual system is performed by Gröbner basis techniques.

    Stable Topologies of Event Horizon

    Get PDF
    In our previous work, it was shown that the topology of an event horizon (EH) is determined by the past endpoints of the EH. A torus EH (the collision of two EH) is caused by the two-dimensional (one-dimensional) set of the endpoints. In the present article, we examine the stability of the topology of the EH. We see that a simple case of a single spherical EH is unstable. Furthermore, in general, an EH with handles (a torus, a double torus, ...) is structurally stable in the sense of catastrophe theory.Comment: 21 pages, revtex, five figures containe
    corecore