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We study the dynamical behavior of dissipative solitons in an optical cavity filled with a Kerr medium when
a localized beam is applied on top of the homogeneous pump. In particular, we report on the excitability regime
that cavity solitons exhibit which is an emergent property since the system is not locally excitable. The
resulting scenario differs in an important way from the case of a purely homogeneous pump and now two
different excitable regimes, both class I, are shown. The whole scenario is presented and discussed, showing
that it is organized by three codimension-2 points. Moreover, the localized beam can be used to control
important features, such as the excitable threshold, improving the possibilities for the experimental observation
of this phenomenon.
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I. INTRODUCTION

Dissipative solitons �also known as localized structures�
are states in extended media that consist of one �or more�
region�s� in one state surrounded by a region in a qualita-
tively different state �in the following this surrounding state
is an area in a stable stationary state�. These structures were
first suggested in Refs. �1,2� and then described in a variety
of systems, such as chemical reactions �3�, semiconductors
�4�, granular media �5�, binary-fluid convection �6,7�, vegeta-
tion patterns �8�, and also in nonlinear optical cavities where
they are usually referred to as cavity solitons �CS� �9–13�
�see Ref. �14–16� for recent surveys�. Their potential in op-
tical storage and processing of information has been stressed
�17�. In this work we shall consider solitons that appear in a
subcritical pattern forming bifurcation �11,18,19�.

In general, dissipative solitons may develop a number of
instabilities like start moving, breathing, or oscillating. In the
latter case, they would oscillate in time while remaining sta-
tionary in space, like the oscillons �oscillating localized
structures� found in a vibrated layer of sand �5�. The occur-
rence of these oscillons in autonomous systems has been
reported both in optical �20,21� and chemical systems �22�. It
has been shown that they can become unstable leading to
excitable solitons in systems for which the local dynamics is
not excitable �23,24�. In this case excitability appears as an
emergent property arising from the spatial dependence,
which allows for the formation of these structures. In particu-
lar, for solitons arising in uniformly pumped Kerr cavities,
excitability is mediated by a saddle-loop �homoclinic� �SL�
bifurcation, and it is characterized by a large excitability
threshold and by occurring at any point of space that is prop-
erly excited �23,24�.

Since CS excitability emerges from the spatial depen-
dence it is interesting to study the effect of breaking the

translational symmetry on the excitable dynamics. In optical
systems this can be easily done by applying a �small ampli-
tude� localized beam on top of the homogeneous pump. Ad-
dressing beams are typically used already to create CS by
applying a transient perturbation. Here we analyze the dy-
namics of CS in a Kerr cavity where we apply a permanent
addressing beam. On the one hand, this pump allows us to
control the place where a CS appears. On the other hand, the
system remains excitable and a new route, mediated by a
saddle-node on an invariant circle �SNIC� bifurcation, ap-
pears. It is characterized by the fact that the excitable thresh-
old is fully tunable, as it scales with the proximity to the
bifurcation.

This paper is organized as follows. The model and overall
dynamical behavior exhibited by the system in parameter
space are described in Secs. II and III. Section IV addresses
the instability exhibited by CS through a SNIC bifurcation.
Section V discusses the excitable routes found in this system.
Sections VI and VII discuss the codimension-2 points that
organize the overall scenario. Finally, concluding remarks
are given in Sec. VIII.

II. MODEL

A prototype model describing an optical cavity filled with
a nonlinear Kerr medium is the one introduced by Lugiato
and Lefever �25� with the goal of studying pattern formation
in this optical system. Later studies showed that this equation
also exhibits CS in some parameter regimes �20,26�. The
model describes the dynamics of the slowly varying ampli-
tude of the electromagnetic field E�x� , t� in the paraxial and
mean-field approximations �x� = �x ,y� is the plane transverse
to the propagation direction z on which the slow dynamics
takes place�. The dynamics of the field is given by

�E

�t
= − �1 + i��E + i�2E + EI�x�� + i�E2�E , �1�

where �2=�2 /�x2+�2 /�y2.
The first term on the right-hand side describes cavity

losses, EI�x�� is the input field �pump�, � is the cavity detun-
ing with respect to EI, and the sign of the cubic term repre-
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sents the self-focusing case. Notice that in the absence of
losses and of an input field, the field can be rescaled to E
→Eei�t to remove the detuning term and Eq. �1� becomes the
nonlinear Schrödinger equation �NLSE�. It is well docu-
mented that in this case, and in two spatial dimensions, the
NLSE exhibits the so-called collapse regime �27�, in which
energy accumulates at a point of space. Collapse is prevented
in Eq. �1� by the cavity losses leading to stable CS.

For spatially homogeneous pump EI�x��=E0, Eq. �1� has a
homogeneous steady state solution given implicitly by E0
=Es�1+ i��− Is��, where Is= �Es�2 �25�. This solution is stable
for low pump strength, that is for Is�1. At Is=1, the so-
called modulation instability �MI� point, the homogeneous
solution becomes unstable and extended patterns appear sub-
critically. The patterns arising at MI are typically oscillatory
and increasing the pump they undergo further instabilities
which eventually lead to optical turbulence �28,29�. Static
hexagonal patterns can be found subcritically, that is, de-
creasing the pump value below the MI point. CS appear in
the region of bistability between the homogeneous solution
and the pattern. In fact there are two CS that appear through
a saddle-node �fold� bifurcation, the one with larger ampli-
tude �upper-branch CS� is stable at least for some parameter
range, while the one with smaller amplitude �middle-branch
CS� is always unstable. Early studies already identified that
the upper branch CS may undergo a Hopf bifurcation leading
to an oscillatory behavior �20�. The oscillatory instabilities,
as well as azimuthal instabilities, were fully characterized
later �21�. As one moves in parameter space away from the
Hopf bifurcation, the CS oscillation amplitude grows, and
finally the limit cycle touches the middle-branch CS in a
saddle-loop bifurcation which leads to a regime of excitable
dissipative structures �23,24�.

Here, we consider a pump beam of the form

EI�r� = E0 + H exp�− r2/r0
2� , �2�

where E0 is a homogeneous field, assumed real, H is the
height of the localized Gaussian perturbation, r2=x2+y2 and
r0 is the width of the Gaussian. For convenience, we write
the height of the Gaussian beam as

H = ��Is + Ish��1 + �� − Is − Ish�2� − E0, �3�

where Is is the background intracavity intensity �due to E0�
and Is+ Ish corresponds to the intracavity field intensity of a
cavity driven by an homogeneous field with an amplitude
equal to one at the top of the Gaussian beam, EI=E0+H.
This directly relates the height of the Gaussian beam H with
the equivalent intracavity intensity for a homogeneous pump.
Notice that for Ish=0 the pump beam becomes homogeneous,
H�Ish=0�=0. With the inclusion of the localized pump beam
the system has now three independent control parameters
which for convenience take as the background intensity, Is,
the detuning �, and Ish.

Throughout this paper we will consider r0=1. This corre-
sponds to a Gaussian perturbation with a size smaller than
the typical soliton size. Localized pumps of width larger than
that of a soliton may lead to the presence of multiple struc-
tures or azimuth instabilities which will eventually evolve to
an extended pattern. For localized pumps of width smaller

than the soliton, we have observed that a small change in the
beam width leads to similar results as the ones shown here
for r0=1; in fact changing r0 is similar to changing Ish. The
most relevant parameter is not the width or the height but its
total energy. Thus, for a fixed r0, Ish measures the energy of
the Gaussian perturbation.

The numerical methods used to study this system are de-
tailed in the Appendix of Ref. �24�. Equation �1�, with the
applied pump �2�, has been solved numerically using a pseu-
dospectral method, where the linear terms are integrated ex-
actly in Fourier space, while the nonlinear ones are inte-
grated using a second order in time approximation. Periodic
boundary conditions in a square lattice of size 512�512
points were used. The stability of steady CS has been studied
using the semianalytical method discussed in the above-
mentioned Appendix �24�, using the radial version of Eq. �1�,
that simplifies the study taking into account the axisymmet-
ric nature of the solutions.

III. OVERVIEW OF THE BEHAVIOR OF THE SYSTEM

One of the main consequences of the application of a
localized pump is the breaking of the translational symmetry
of Eq. �1�. Solutions are now pinned in the region in which
the Gaussian pump is applied. This also affects the transverse
profile of the solutions, in particular the fundamental solution
is no longer spatially homogeneous but it exhibits a bump as
illustrated by the lower inset in Fig. 1.

To better understand the effects of the application of a
localized pump, a diagram such as the one shown in Fig. 2 of
Ref. �24�, that represents the maximum intensity of the trans-
verse field as a function of Is is shown in Fig. 1, namely for
Ish=0.3 and �=1.25. The diagram, with three branches, looks
qualitatively equivalent to the case of a homogeneous pump
and operations such as switching on and off the CS can be
performed in a similar way. For example, with the system at

SN

SN2

H

FIG. 1. �Color online� Bifurcation diagram, max �I� vs Is, for a
CS for Ish=0.3, �=1.25. Solid lines represent stable solutions and
dashed lines unstable ones. The insets show the transverse profile of
the solutions. All the quantities plotted in this figure as well as in
the other figures of this paper are dimensionless.
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the fundamental solution, the upper branch CS can be
switched on by applying an additional transient localized
beam or equivalently by temporarily increasing Ish.

A relevant difference is that for a homogeneous pump the
lowest branch �homogeneous solution� extends until the MI
at Is=1, while in the case considered here the fundamental
solution merges with the middle branch CS before the MI, in
a saddle-node bifurcation �that happens at Is=0.8479, SN2
point in Fig. 1�. To understand qualitatively this phenomenon
one must take into account that the homogeneous pump case
has many symmetries, some of which are broken when a
localized pump is applied. In technical parlance one says that
the bifurcation has become imperfect �see, e.g., �30��, with
the consequence that a gap in Is appears making the lower
branch disconnected in two branches �the right-hand part of
the branch is not plotted in Fig. 1 and correspond to solutions
unstable to extended patterns�.

Exploring now the upper branches, in Fig. 1 past the
saddle-node bifurcation at Is=0.6857 �SN point�, a pair of
stationary �stable, upper branch, and unstable, middle
branch� localized solutions in the form of CS are found. In
this parameter region, these structures are not essentially dif-
ferent to the solutions found in the homogeneous case �24�.
Increasing Is the stable high-amplitude CS undergoes a Hopf
bifurcation.

Overall the scenario found for a localized pump displays a
richer variety of dynamical behaviors than in the case of
homogeneous pump. Figure 2 shows a phase diagram for a
fixed value of the localized pump Ish=0.3. One can compare
this figure with Fig. 1 in Ref. �24�, corresponding to Ish=0.
The effect of breaking the translational symmetry would be
to unfold some of the lines at Is=1 �not visible in Fig. 1 of
Ref. �24��, that are degenerate with the MI line, and also
make the SN line end at Is�1 �point C in Fig. 2�. Thus, the

effect of a localized pump is to push down the SN2-SNIC
line �to be explained later�, as is clear from Fig. 3, that pro-
vides a similar plot for Ish=0.7.

Some of the most prominent features of these figures, in
comparison with the homogeneous pump case, associated to
the appearance of the SNIC line �to be discussed in more
detail in Sec. IV� are that the excitable region, IV in Figs. 2
and 3 can have two types of excitable behavior �see Sec. V�,
both of class I, as two different transitions to oscillatory be-
havior are possible, saddle loop �SL� and SNIC. In addition,
one has a new region, V, in which one has a single attractor
in the system, that is oscillatory, to be distinguished from
region III, in which the system exhibits bistability �31�, be-
tween the �stationary� fundamental solution and an oscilla-
tory upper branch CS. These behaviors, and how they are
organized by three codimension-2 points will be the subject
of Secs. VI and VII.

IV. SADDLE-NODE ON THE INVARIANT
CIRCLE BIFURCATION

A saddle-node on the invariant circle bifurcation �SNIC�,
also known as saddle-node infinite-period �SNIPER� and as
saddle-node central homoclinic bifurcation, is a special case
of a saddle-node bifurcation that occurs inside a limit cycle.
Although this bifurcation is local in �one-dimensional� flows
on the circle, it has global features in higher-dimensional
dynamical systems �30�, so it is also termed local global or
semilocal. In particular, the �stable� manifolds of the saddle
and node fixed points transverse to the center manifold are
organized by an unstable focus inside the limit cycle. At one
side of the bifurcation the system exhibits oscillatory behav-
ior, while at the other side the dynamics of the system is
excitable. This mechanism leading to excitability has been
found in several �zero dimensional� optical systems �32–34�.

When approaching the bifurcation from the oscillatory
side the period lengthens and becomes infinite. Quantita-
tively the period as a function of a parameter exhibits a in-
verse square root singular law �30�,

V

I

IV

II

SNIC

SN

H

III

S
L

SN2

SNSL
C

FIG. 2. Two-parameter Is vs � phase diagram for Ish=0.3. Bi-
furcation lines are SN �saddle-node�; H �Hopf�; SL �saddle-loop�;
SNIC �saddle-node on the invariant circle�; SN2 �saddle-node off
invariant cycle�. Regions delimited by bifurcation lines are as fol-
lows. I, only the fundamental solution is stable; II, stationary stable
CS coexisting with the fundamental one; III, oscillating CS �or
oscillons�, coexisting with the fundamental solution; IV, excitable
region; V, oscillating CS �with no other coexisting solution�.

V

I

IVII

SNIC

SN

H

S
L

SN2 SNSL

C
III

FIG. 3. Two-parameter Is vs � phase diagram for Ish=0.7. Line
and region labeling as in Fig. 2.
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T � �Is
2 − �Is

c�2�−1/2. �4�

This can be used to distinguish the SNIC from other bifur-
cations leading to oscillatory behavior �e.g., from the saddle-
loop bifurcation with a logarithmic singular law �23,24,30��.
Figure 4 shows the period of the oscillations as a function of
Is obtained by numerical simulations of Eq. �1�. In the inset
of Fig. 4 we plot 1 /T2 versus Is

2 close to the bifurcation point.
The linear dependence obtained corroborates the scaling law
and that the transition takes place through a SNIC bifurca-
tion.

The overall route exhibited by the system along a vertical
cut in Fig. 2 at �=1.45 is illustrated in Fig. 5, as the param-
eter Is is decreased from the top to the bottom of the figure.
Thus, the figure shows the transition from oscillatory behav-
ior �top panel� to stationary �fourth panel� through the occur-

rence of a SNIC bifurcation �third panel�. Lengthening of the
period can be seen in the second panel. The sketches shown
on the right-hand column of Fig. 5 illustrate the structure of
the phase space. The validity of this scenario is further rein-
forced with the quantitative analysis presented in Sec. VII.

V. EXCITABILITY

An interesting aspect of this scenario is that in region IV
one can have excitable behavior through two different
mechanisms. On the one hand, and similarly to the behavior
analyzed in Refs. �23,24�, close enough to the SL line one
has excitability if the fundamental solution is appropriately
excited such that the oscillatory behavior existing beyond the
SL is transiently recreated. The second mechanism takes
place close to the SNIC line, where the oscillatory behavior
that is transiently recreated is that of the oscillations in re-
gion V. Both excitable behaviors exhibit a response starting
at zero frequency �or infinite period�, as both bifurcations are
mediated by a saddle, whose stable manifold is the threshold
beyond which perturbations must be applied to excite the
system. In neuroscience terminology, both excitable behav-
iors are class �or type� I �35,36�, although there are important
differences between them. The SNIC mediated excitability is
easier to observe than the one associated to a saddle-loop
bifurcation for two reasons. First, it occurs in a broader pa-
rameter range due to its square-root scaling law �4�, with
respect to the SL excitability �37�. Second the excitable
threshold can be controlled by the intensity of the localized
Gaussian beam, that effectively approaches the fixed point
and the saddle in phase space, allowing to reduce the thresh-
old as much as desired �by approaching the SNIC line�.
Within region IV one can find a typical crossover behavior
for the threshold, as it increases from zero �at the SNIC line�
to the �finite� value characteristic of the SL bifurcation as one
approaches this line.

Figure 6 shows the dynamics of the excitable fundamental
solution in region IV, namely for the parameters correspond-
ing to the fourth panel in Fig. 5, upon the application of
different localized perturbations, one below the excitable
threshold and two above. As expected, the perturbation be-
low threshold relaxes directly to the fundamental solution

FIG. 4. �Color online� Period of the limit cycle T as a function
of Is for Ish=0.3 and �=1.45. Inset: 1 /T2 vs Is close to the bifurca-
tion point.

FIG. 5. �Color online� Time evolution of the CS amplitude for
Ish=0.3, �=1.45 and decreasing values of Is. From top to bottom,
Is=0.927,0.907,0.8871,0.8. In the bottom panel the dashed line
corresponds to the amplitude of the unstable CS �saddle� while the
dotted-dashed line corresponds to the stable fundamental solution.
These two solutions coincide when the SNIC bifurcation takes
place �third panel�. The sketches on the right-hand side illustrate the
phase space dynamics.

FIG. 6. �Color online� Evolution of the maximum of the field
amplitude after applying a localized perturbation to the fundamental
solution. The perturbation has the shape of the unstable stationary
CS �saddle�, that is scaled by 0.95 �blue dashed line�, 1.01 �green
solid line�, and 1.1 �red dotted line�. Here Ish=0.3, Is=0.8, and �
=1.45.
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while the above threshold perturbations elicit first a large
response of the system in the form of an excitable soliton
which finally relaxes to the fundamental solution. The excit-
able excursion takes place at a later time as the smaller is the
distance to the threshold �a signature of class I excitability�.
Finally, the shape of an excitable excursion in two-
dimensional space is shown in Fig. 7.

VI. CUSP CODIMENSION-2 POINT

In the two-parameter phase diagrams in Figs. 2 and 3 one
can see a point marked with a C that was not found in the
homogeneous case �38�. This point represents a cusp
codimension-2 bifurcation point �39�, namely a point in
which two saddle-node curves merge. This cusp point, that
involves only stationary �saddle-node� bifurcations, is also
known as the cusp catastrophe �40�. For parameter values
just at the left of the cusp the bump of the fundamental
solution exhibits a rapid increase. Figure 8 shows the sharp,
but smooth, change in the shape of the fundamental solution
for three parameter values around the cusp point within re-
gion I. Instead, if one is to the right of the C point this
increase cannot be accommodated smoothly and a double
fold occurs, such that three branches appear: Two stable,
upper and lower branches, and one unstable, middle branch,
and thus bistability makes its appearance. The two folds,
codim-1, merge critically at the cusp point, codim-2. De-
creasing Ish the cusp moves up towards Is=1, so in the limit
of homogeneous pump it cannot be seen due to the presence
of the MI instability. The smooth connection between the
fundamental branch and the upper branch exhibiting CS is an
outcome of the symmetry breaking induced by the localized
pump which has made the MI bifurcation become imperfect.

VII. SADDLE-NODE SEPARATRIX-LOOP
CODIMENSION-2 POINT

The subject of the present section is to discuss the point
designated with SNSL �that stands for saddle-node separatrix
loop �35,41� �also called saddle-node noncentral homoclinic
bifurcation and saddle-node homoclinic orbit bifurcation
�36�� in Figs. 2 and 3. An SNSL is a local-global
codimension-2 point in which a saddle-node bifurcation
takes place simultaneously to a saddle loop, such that the
orbit enters through the noncentral �stable� manifold. The
unfolding of a SNSL point leads to the scenario depicted in
Fig. 9. There is a line of saddle-node bifurcations �in which a
pair of stable and unstable fixed points are created� that at

FIG. 7. �Color online� Trans-
verse profile of �E� at different
times of the dotted line in Fig. 6.

I

II

SN

H

SN2C

FIG. 8. �Color online� The fundamental solution for three points
in the �Is ,�� parameter space, for Ish=0.3, around the cusp
codimension-2 point. The coordinates are �bottom to top� Is=0.7,
�=0.9; Is=0.85, �=0.85; Is=0.95, �=0.95.
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one side of the SNSL is a saddle-node bifurcation off limit
cycle �SN2� while at the other side is a SNIC bifurcation �the
saddle-node occurs inside the limit cycle�. A saddle-loop
�SL� bifurcation also unfolds from the SNSL point, tangent
to the SN2 line. From the other side, a special curve depicted
with a dotted line in Fig. 9 should appear �cf. Fig. 22 in Ref.
�35��. It is not a bifurcation line, but instead it is a special
line in which the approach to the node point is through the
most stable direction, namely the direction transverse to the
central manifold at the SNIC-SN2 �and SNSL� bifurcations
�for these reasons we also call this dotted line the pseudobi-
furcation line�. This, in principle nongeneric, curve, that
emerges in the unfolding of the SNSL point, is necessary for
consistency on the excursions around the SNSL
codimension-2 point. At the pseudobifurcation the topologi-
cal cycle is reconstructed, namely the stable fundamental so-
lution and the middle branch CS �saddle�, become points
belonging to the circle that later will become the limit cycle.
Before the pseudobifurcation, the unstable manifold of the
saddle enters towards the stable solution from the same side
as the saddle, while after the pseudobifurcation it enters from
the opposite side.

The SNSL point separates two possible ways in which the
system can go from oscillatory region III �where the limit
cycle coexists with the stable fundamental solution� to oscil-
latory region V �where the fundamental solution does not
exist�.

For ���SNSL the scenario is as described in Sec. IV,
namely the middle and lower branches coalesce in a SNIC
bifurcation. The main feature of this bifurcation is that it
occurs on the limit cycle, leading to the excitable behavior of
region IV. This scenario can be confirmed using the mode
projection technique described in the Appendix of Ref. �24�,
that allows us to obtain in a quantitative form the phase
space of an extended system �described, e.g., by a PDE�, that
strictly has an infinite dimension, but whose relevant dynam-
ics is low dimensional. In this case, as in the case of a
saddle-loop bifurcation studied in Ref. �24�, we will argue
that there are just two modes that are relevant, at least in the
region close to the SNSL codimension-2 point. Figure 10
shows the spectrum of eigenvalues �linear stability analysis

for the fundamental solution� at the SNIC bifurcation and
close to the SNSL. The spectrum has a continuous part with
eigenvalues lying along the line Re���=−1, and also a dis-
crete part which is symmetric with respect to this line. It
turns out that there are only two eigenmodes which are lo-
calized in space, while all the other eigenmodes are spatially
extended. The two localized eigenmodes correspond to the
most stable mode and to the one that becomes unstable.
These two modes, shown in Fig. 11, are the only ones rel-
evant for the dynamics of the CS close to the stable fixed
point, since the projection of a localized solution onto any of
the extended modes is negligible.

Figure 12 shows a quantitative reconstruction of the phase
space. �1 ��2� corresponds to the amplitude of the projection
of the trajectory along the unstable �most stable� eigenmode.
Panel �a� represents a trajectory in the excitable region IV,
close to the SNSL and below the pseudobifurcation line.
Panel �b� shows a zoom of the trajectory close to the saddle
�open circle� and the stable fundamental solution �filled
circle�. The excitable trajectory departs form the saddle and
after long excursion in phase space arrives at the fundamen-
tal solution from below �that is, from the side of the saddle�.
Notice that while close to the fixed points the dynamics fit
very well in a two-dimensional picture, away from them the
line crosses, indicating that the full CS dynamics in phase
space is not confined to a plane. Panel �c� corresponds to the
pseudobifurcation, so that the trajectory arrives at the funda-
mental solution along the most stable direction. Panel �d� is
just after the pseudobifurcation with the trajectory arriving
from the other side. Finally panel �e� corresponds to param-
eters in the oscillatory region V just after the SNIC bifurca-
tion. Notice that the pseudobifurcation line is very close to
the SNIC bifurcation since we have taken parameters close
to the SNSL and at the SNSL both lines originate tangen-
tially. As expected, the quantitative picture agrees with the
qualitative picture as one crosses the SNIC bifurcation in the
right-hand panels of Fig. 5.

For ���SNSL the scenario is quite different, as the middle
and lower branches now coalesce off the limit cycle, SN2,

SL

SNSL

SNIC
SN2

SL

FIG. 9. Sketch of the parameter space near the SNSL point,
showing the unfolding of bifurcation lines, and adapted to the ge-
ometry in Figs. 2 and 3.

FIG. 10. Spectrum of the fundamental solution at the SNIC
bifurcation for Ish=0.7, Is=0.707, and �=1.34 �close to the SNSL�.
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which implies that the behavior of the system is oscillatory
on both sides of the SN2 line, not excitable �42�, and instead
one crosses the SN2 line. This means that one is in a bistable
oscillatory regime, and in crossing the SN2 line a saddle-
node off the invariant cycle bifurcation occurs. SN2 involves
the middle and fundamental branches �while SN involves the
upper and middle branches�. So, in the end this is nothing
else than another way of entering region V, of monostable
oscillatory behavior, but instead of reconstructing the limit
cycle, here the fundamental stationary solution is destroyed.

Therefore, and having in mind the behavior for �→	
discussed in previous work for homogeneous pump �23,24�,
the overall scenario depicted in Figs. 2 and 3 is organized by
three codimension-2 points: a cusp point, from which two
saddle-node bifurcations emerge �SN and SN2�; an SNSL
point from which a SNIC line emerges, and that organizes
the SN2 and SL lines around; and a Takens-Bodgdanov
point, occurring apparently at infinite detuning, where the
SN, Hopf, and SL are tangent, and that can be seen as the
birth of both the Hopf, and SL lines. The Takens-Bogdanov
point was numerically shown to be present in the homoge-
neous case �23,24�. It is reassuring that the saddle-loop bi-
furcation line connects two of the codimension-2 points, as it
is not in some sense generic �43�, and one does not expect
that it emerges out of the blue. The scenario composed by
these three codimension-2 bifurcations has been reported in
other systems �44�, and from a theoretical point of view, it
can be shown that it appears in the unfolding in two-
dimensional parameter space of a codimension-3 degenerate
Takens-Bogdanov point �45�.

In the limit of homogeneous pump the SN2 and SNIC
lines approach the MI line at Is=1, which, therefore, also
contains the cusp and the SNSL codimension-2 points. At the
cusp the SN �responsible for the existence of CS� originates
while at the SNSL the SL �originated at the Takens-
Bogdanov and responsible of the CS excitability observed

FIG. 11. Transverse cut of the most stable �a� and unstable �b�
eigenmodes of the linear spectrum shown in Fig. 10. The solid
�dashed� line indicates the real �imaginary� part of the eigenmode.

b) c) d) e)

a)

FIG. 12. �Color online� �a� Full trajectory in the phase space close to the SNIC �Is=0.863�. The smaller panels show a zoom of the region
in the phase space close to the fixed point. �b� Is=0.863, �c� Is=0.863 4575, �d� Is=0.8635, and �e� Is=0.864. Here Ish=0.3 and �=1.34.
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for homogeneous pump� ends. Notice that for homogeneous
pump close to Is=1 azimuthal instabilities renders the CS
unstable to a pattern so it is difficult to study the SN and
especially the SL lines in that region. Using a localized pump
and then taking the limit to homogeneous pump circumvents
these limitations.

VIII. CONCLUSIONS

We have presented a detailed study of the instabilities of
solitons in nonlinear Kerr cavities under the application of a
localized Gaussian beam. Since experimentally CS are typi-
cally switched on by applying a transient addressing beam
the situation discussed here can be realized just by applying
it on a permanent basis. The CS are sustained by a balance
between nonlinearity and dissipation, as in the case of a ho-
mogeneous pump, although now these effects interact with
the localized pump. The localized pump helps to spatially fix
the CS and to control some of its dynamical properties. After
the saddle-node bifurcation that creates the CS, it starts os-
cillating and overall exhibit a plethora of bifurcations that are
shown to be organized by three codimension-2 points: A
Takens-Bogdanov point �which is also present for homoge-
neous pump as discussed already in �23,24��, a cusp, and a
saddle-node separatrix loop �SNSL� points. In this scenario a
saddle-loop bifurcation connects the Takens-Bogdanov and
the SNSL and the cusp is connected to the other
codimension-2 bifurcations by two saddle-node lines. A line
of SNIC bifurcations originates at the SNSL while at the

Takens-Bogdanov a Hopf bifurcation line meets tangentially
a saddle-node and the saddle-loop lines.

The simultaneous presence in the system of two bifurca-
tions that are associated to excitable behavior �saddle-loop
and SNIC� enriches and completes the picture discussed for
the case of a homogeneous pump. In fact the region for
which excitable behavior is reported, in which the only at-
tractor in the system is the fundamental solution, leads to two
different class I behaviors �starting at infinite period�. In the
excitable region one goes smoothly from no threshold at the
onset of the SNIC line to a finite threshold at the onset of the
saddle-loop line. In fact, the excitable behavior mediated by
a SNIC, and reported in this work, should be easier to ob-
serve both numerically and experimentally, and present some
practical features that make it more suitable for practical ap-
plications. In particular, the excitable threshold can be con-
trolled by the intensity of the localized beam. With an array
of properly engineered beams, created, for instance, with a
spatial light modulator, one could create reconfigurable ar-
rays of coupled excitable units to all-optically process infor-
mation. Work in this direction will be reported elsewhere.

ACKNOWLEDGMENTS

We acknowledge financial support from MEC �Spain� and
FEDER �EU� through Grants No. FIS2007-60327 �FISICOS�
and No. TEC2006-10009 �PhoDeCC�, and from Govern
Balear through Grant No. PROGECIB-5A �QULMI�. We are
grateful to Diego Pazó for useful discussions. A.J. acknowl-
edges financial support from MEC.

�1� S. Koga and Y. Kuramoto, Prog. Theor. Phys. 63, 106 �1980�.
�2� B. S. Kerner and V. V. Osipov, Autosolitons: A New Approach

to Problems of Self-Organization and Turbulence �Kluwer,
Dordrecht, 1994�.

�3� V. K. Vanag and I. R. Epstein, Chaos 17, 037110 �2007�.
�4� F. J. Niedernostheide, B. S. Kerner, and H. G. Purwins, Phys.

Rev. B 46, 7559 �1992�.
�5� P. B. Umbanhowar, F. Melo, and H. L. Swinney, Nature �Lon-

don� 382, 793 �1996�.
�6� J. J. Niemela, G. Ahlers, and D. S. Cannell, Phys. Rev. Lett.

64, 1365 �1990�.
�7� O. Batiste and E. Knobloch, Phys. Rev. Lett. 95, 244501

�2005�.
�8� O. Lejeune, M. Tlidi, and P. Couteron, Phys. Rev. E 66,

010901�R� �2002�.
�9� W. J. Firth and C. O. Weiss, Opt. Photonics News 13, 55

�2002�.
�10� Feature Section on Cavity Solitons, edited by L. A. Lugiato

�IEEE J. Quant. Elect. 39�2� �2003��.
�11� N. N. Rosanov, Spatial Hysteresis and Optical Patterns,

Springer Series in Synergetics �Springer, Berlin, 2002�.
�12� S. Barland et al., Nature �London� 419, 699 �2002�.
�13� Y. Tanguy, T. Ackemann, W. J. Firth, and R. Jäger, Phys. Rev.

Lett. 100, 013907 �2008�.
�14� M. Tlidi, M. Taki, and T. Kolokolnikov, Chaos 17, 037101

�2007�.
�15� Dissipative Solitons, edited by N. Akhmediev and A. Ank-

iewicz, Lecture Notes in Physics, Vol. 661 �Springer, Berlin,
2005�.

�16� Dissipative Solitons: From Optics to Biology and Medicine,
edited by N. Akhmediev and A. Ankiewicz, Lecture Notes in
Physics Vol. 751 �Springer, Berlin, 2008�.

�17� P. Coullet, C. Riera, and C. Tresser, Chaos 14, 193 �2004�.
�18� S. Fauve and O. Thual, Phys. Rev. Lett. 64, 282 �1990�.
�19� M. Tlidi, P. Mandel, and R. Lefever, Phys. Rev. Lett. 73, 640

�1994�.
�20� W. J. Firth, A. Lord, and A. J. Scroggie, Phys. Scr., T T67, 12

�1996�.
�21� W. J. Firth, G. K. Harkness, A. Lord, J. McSloy, D. Gomila,

and P. Colet, J. Opt. Soc. Am. B 19, 747 �2002�.
�22� V. K. Vanag and I. R. Epstein, Phys. Rev. Lett. 92, 128301

�2004�.
�23� D. Gomila, M. A. Matías, and P. Colet, Phys. Rev. Lett. 94,

063905 �2005�.
�24� D. Gomila, A. Jacobo, M. A. Matías, and P. Colet, Phys. Rev.

E 75, 026217 �2007�.
�25� L. A. Lugiato and R. Lefever, Phys. Rev. Lett. 58, 2209

�1987�.
�26� W. J. Firth and A. Lord, J. Mod. Opt. 43, 1071 �1996�.
�27� J. Rasmussen and K. Rypdal, Phys. Scr. 33, 481 �1986�.

JACOBO et al. PHYSICAL REVIEW A 78, 053821 �2008�

053821-8



�28� D. Gomila and P. Colet, Phys. Rev. A 68, 011801�R� �2003�.
�29� D. Gomila and P. Colet, Phys. Rev. E 76, 016217 �2007�.
�30� S. H. Strogatz, Nonlinear Dynamics And Chaos �Addison-

Wesley, Reading, MA, 1994�.
�31� When speaking about monostability and bistability we refer to

localized solutions. In general, several extended solutions �pat-
terns� may also be coexisting.

�32� P. Coullet, D. Daboussy, and J. R. Tredicce, Phys. Rev. E 58,
5347 �1998�.

�33� M. Giudici, C. Green, G. Giacomelli, U. Nespolo, and J. R.
Tredicce, Phys. Rev. E 55, 6414 �1997�.

�34� D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hart-
nett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet,
Phys. Rev. Lett. 98, 153903 �2007�.

�35� E. M. Izhikevich, Int. J. Bifurcation Chaos Appl. Sci. Eng. 10,
1171 �2000�.

�36� E. M. Izhikevich, Dynamical Systems in Neuroscience �MIT
Press, Cambridge, MA, 2007�.

�37� For saddle-loop mediated excitability the scaling law is loga-
rithmic, implying that the frequency increases very fast from
zero in a very narrow range, and, thus, its class I features can
be easily missed experimentally �36�.

�38� The cusp coordinates are Is=0.834, �=0.961 for Ish=0.3 �Fig.
2�, and Is=0.61, �=0.968 for Ish=0.7 �Fig. 3�.

�39� Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, 3rd
ed. �Springer-Verlag, Berlin, 2004�.

�40� T. Poston and I. Stewart, Catastrophe Theory and its Applica-
tions �Longman, Essex, 1979�.

�41� S. Schecter, SIAM J. Math. Anal. 18, 1142 �1987�.
�42� Due to the bending of the SL line when approaching the

SNSL, there is a region in which vertical paths in parameter
space cross the SL line 2 times. Qualitatively there is no dif-
ference between crossing 2 times or none, as one is in the
oscillatory bistable region III when approaching the SN2 line.

�43� Because it implies that a limit cycle has a tangency simulta-
neously with the stable and unstable manifolds of a saddle
point.

�44� E. Meca, I. Mercader, O. Batiste, and L. Ramírez-Piscina,
Theor. Comput. Fluid Dyn. 18, 231 �2004�, and references
therein.

�45� F. Dumortier, R. Roussarie, J. Sotomayor, and H. Zoladek,
Bifurcations of Planar Vector Fields. Nilpotent Singularities
and Abelian Integrals, Lecture Notes in Mathematics Vol.
1480 �Springer-Verlag, Berlin, 1991�.

EFFECTS OF A LOCALIZED BEAM ON THE DYNAMICS… PHYSICAL REVIEW A 78, 053821 �2008�

053821-9


