139 research outputs found

    Coletor de esporos: descrição, uso e resultados no manejo da ferrugem-asiática da soja.

    Get PDF
    bitstream/item/220504/1/Circ-Tec-167.pd

    Expansion of the miRNA Pathway in the Hemipteran Insect Acyrthosiphon pisum

    Get PDF
    The pathways that allow short noncoding RNAs such as the microRNAs (miRNAs) to mediate gene regulation and control critical cellular and developmental processes involve a limited number of key protein components. These proteins are the Dicer-like RNases, double-stranded RNA (dsRNA)-binding proteins, and the Argonaute (AGO) proteins that process stem-loop hairpin transcripts of endogenous genes to generate miRNAs or long dsRNA precursors (either exogenous or endogenous). Comparative genomics studies of metazoans have shown the pathways to be highly conserved overall; the major difference observed is that the vertebrate pathways overlap in sharing a single Dicer (DCR) and AGO proteins, whereas those of insects appear to be parallel, with distinct Dicers and AGOs required for each pathway. The genome of the pea aphid is the first available for a hemipteran insect and discloses an unexpected expansion of the miRNA pathway. It has two copies of the miRNA-specific dicr-1 and ago1 genes and four copies of pasha a cofactor of drosha involved in miRNA biosynthesis. For three of these expansions, we showed that one copy of the genes diverged rapidly and in one case (ago1b) shows signs of positive selection. These expansions occurred concomitantly within a brief evolutionary period. The pea aphid, which reproduces by viviparous parthenogenesis, is able to produce several adapted phenotypes from one single genotype. We show by reverse transcriptase-polymerase chain reaction that all the duplicated copies of the miRNA machinery genes are expressed in the different morphs. Investigating the function of these novel genes offers an exciting new challenge in aphid biology

    Resultados do manejo integrado de pragas da soja na safra 2018/19 no Paraná.

    Get PDF
    bitstream/item/201452/1/Doc-416-OL-2.pd

    Silencing of Aphid Genes by dsRNA Feeding from Plants

    Get PDF
    RNA interference (RNAi) is a valuable reverse genetics tool to study gene function in various organisms, including hemipteran insects such as aphids. Previous work has shown that RNAi-mediated knockdown of pea aphid (Acyrthosiphon pisum) genes can be achieved through direct injection of double-stranded RNA (dsRNA) or small-interfering RNAs (siRNA) into the pea aphid hemolymph or by feeding these insects on artificial diets containing the small RNAs.In this study, we have developed the plant-mediated RNAi technology for aphids to allow for gene silencing in the aphid natural environment and minimize handling of these insects during experiments. The green peach aphid M. persicae was selected because it has a broad plant host range that includes the model plants Nicotiana benthamiana and Arabidopsis thaliana for which transgenic materials can relatively quickly be generated. We targeted M. persicae Rack1, which is predominantly expressed in the gut, and M. persicae C002 (MpC002), which is predominantly expressed in the salivary glands. The aphids were fed on N. benthamiana leaf disks transiently producing dsRNA corresponding to these genes and on A. thaliana plants stably producing the dsRNAs. MpC002 and Rack-1 expression were knocked down by up to 60% on transgenic N. benthamiana and A. thaliana. Moreover, silenced M. persicae produced less progeny consistent with these genes having essential functions.Similar levels of gene silencing were achieved in our plant-mediated RNAi approach and published silencing methods for aphids. Furthermore, the N. benthamiana leaf disk assay can be developed into a screen to assess which genes are essential for aphid survival on plants. Our results also demonstrate the feasibility of the plant-mediated RNAi approach for aphid control

    MerTK expressing hepatic macrophages promote the resolution of inflammation in acute liver failure.

    Get PDF
    OBJECTIVE: Acute liver failure (ALF) is characterised by overwhelming hepatocyte death and liver inflammation with massive infiltration of myeloid cells in necrotic areas. The mechanisms underlying resolution of acute hepatic inflammation are largely unknown. Here, we aimed to investigate the impact of Mer tyrosine kinase (MerTK) during ALF and also examine how the microenvironmental mediator, secretory leucocyte protease inhibitor (SLPI), governs this response. DESIGN: Flow cytometry, immunohistochemistry, confocal imaging and gene expression analyses determined the phenotype, functional/transcriptomic profile and tissue topography of MerTK+ monocytes/macrophages in ALF, healthy and disease controls. The temporal evolution of macrophage MerTK expression and its impact on resolution was examined in APAP-induced acute liver injury using wild-type (WT) and Mer-deficient (Mer-/-) mice. SLPI effects on hepatic myeloid cells were determined in vitro and in vivo using APAP-treated WT mice. RESULTS: We demonstrate a significant expansion of resolution-like MerTK+HLA-DRhigh cells in circulatory and tissue compartments of patients with ALF. Compared with WT mice which show an increase of MerTK+MHCIIhigh macrophages during the resolution phase in ALF, APAP-treated Mer-/- mice exhibit persistent liver injury and inflammation, characterised by a decreased proportion of resident Kupffer cells and increased number of neutrophils. Both in vitro and in APAP-treated mice, SLPI reprogrammes myeloid cells towards resolution responses through induction of a MerTK+HLA-DRhigh phenotype which promotes neutrophil apoptosis and their subsequent clearance. CONCLUSIONS: We identify a hepatoprotective, MerTK+, macrophage phenotype that evolves during the resolution phase following ALF and represents a novel immunotherapeutic target to promote resolution responses following acute liver injury

    Suppressor CD4+ T cells expressing HLA-G are expanded in the peripheral blood from patients with acute decompensation of cirrhosis.

    Get PDF
    OBJECTIVE: Identifying components of immuneparesis, a hallmark of chronic liver failure, is crucial for our understanding of complications in cirrhosis. Various suppressor CD4+ T cells have been established as potent inhibitors of systemic immune activation. Here, we establish the presence, regulation and mechanism of action of a suppressive CD4+ T cell subset expressing human leucocyte antigen G (HLA-G) in patients with acute decompensation of cirrhosis (AD). DESIGN: Flow cytometry was used to determine the proportion and immunophenotype of CD4+HLA-G+ T cells from peripheral blood of 20 healthy controls (HCs) and 98 patients with cirrhosis (28 with stable cirrhosis (SC), 20 with chronic decompensated cirrhosis (CD) and 50 with AD). Transcriptional and functional signatures of cell-sorted CD4+HLA-G+ cells were delineated by NanoString technology and suppression assays, respectively. The role of immunosuppressive cytokine interleukin (IL)-35 in inducing this population was investigated through in vitro blockade experiments. Immunohistochemistry (IHC) and cultures of primary human Kupffer cells (KCs) were performed to assess cellular sources of IL-35. HLA-G-mediated T cell suppression was explored using neutralising antibodies targeting co-inhibitory pathways. RESULTS: Patients with AD were distinguished by an expansion of a CD4+HLA-G+CTLA-4+IL-35+ immunosuppressive population associated with disease severity, clinical course of AD, infectious complications and poor outcome. Transcriptomic analyses excluded the possibility that these were thymic-derived regulatory T cells. IHC analyses and in vitro cultures demonstrate that KCs represent a potent source of IL-35 which can induce the observed HLA-G+ phenotype. These exert cytotoxic T lymphocyte antigen-4-mediated impaired responses in T cells paralleled by an HLA-G-driven downregulation of T helper 17-related cytokines. CONCLUSION: We have identified a cytokine-driven peripherally derived suppressive population that may contribute to immuneparesis in AD

    Male age is associated with extra-pair paternity, but not with extra-pair mating behaviour

    Get PDF
    Extra-pair paternity is the result of copulation between a female and a male other than her social partner. In socially monogamous birds, old males are most likely to sire extra-pair offspring. The male manipulation and female choice hypotheses predict that age-specific male mating behaviour could explain this old-over-young male advantage. These hypotheses have been difficult to test because copulations and the individuals involved are hard to observe. Here, we studied the mating behaviour and pairing contexts of captive house sparrows, Passer domesticus. Our set-up mimicked the complex social environment experienced by wild house sparrows. We found that middle-aged males, which would be considered old in natural populations, gained most extra-pair paternity. However, both, female solicitation behaviour and subsequent extra-pair matings were not associated with male age. Further, copulations were more likely when solicited by females than when initiated by males (i.e. unsolicited copulations). Male initiated within-pair copulations were more common than male initiated extra-pair copulations. To conclude, our results did not support either hypothesis regarding age-specific male mating behaviour. Instead, female choice, independent of male age, governed copulation success, especially in an extra-pair context. Post-copulatory mechanisms might determine why older males sire more extra-pair offspring

    Down-Regulation of Honey Bee IRS Gene Biases Behavior toward Food Rich in Protein

    Get PDF
    Food choice and eating behavior affect health and longevity. Large-scale research efforts aim to understand the molecular and social/behavioral mechanisms of energy homeostasis, body weight, and food intake. Honey bees (Apis mellifera) could provide a model for these studies since individuals vary in food-related behavior and social factors can be controlled. Here, we examine a potential role of peripheral insulin receptor substrate (IRS) expression in honey bee foraging behavior. IRS is central to cellular nutrient sensing through transduction of insulin/insulin-like signals (IIS). By reducing peripheral IRS gene expression and IRS protein amount with the use of RNA interference (RNAi), we demonstrate that IRS influences foraging choice in two standard strains selected for different food-hoarding behavior. Compared with controls, IRS knockdowns bias their foraging effort toward protein (pollen) rather than toward carbohydrate (nectar) sources. Through control experiments, we establish that IRS does not influence the bees' sucrose sensory response, a modality that is generally associated with food-related behavior and specifically correlated with the foraging preference of honey bees. These results reveal a new affector pathway of honey bee social foraging, and suggest that IRS expressed in peripheral tissue can modulate an insect's foraging choice between protein and carbohydrate sources
    corecore