8,532 research outputs found

    A model to compare performance of space and ground network support of low-Earth orbiters

    Get PDF
    This article compares the downlink performance in a gross average sense between space and ground network support of low-Earth orbiters. The purpose is to assess what the demand for DSN support of future small, low-cost missions might be, if data storage for spacecraft becomes reliable enough and small enough to support the storage requirements needed to enable support only a fraction of the time. It is shown that the link advantage of the DSN over space reception in an average sense is enormous for low-Earth orbiters. The much shorter distances needed to communicate with the ground network more than make up for the speedup in data rate needed to compensate for the short contact times with the DSN that low-Earth orbiters have. The result is that more and more requests for DSN-only support of low-Earth orbiters can be expected

    Deep space communications, weather effects, and error control

    Get PDF
    Deep space telemetry is and will remain signal-to-noise limited and vulnerable to interference. A need exists to increase received signal power and decrease noise. This includes going to Ka-band in the mid-1990's to increase directivity. The effects of a wet atmosphere can increase the noise temperature by a factor of 5 or more, even at X-band, but the order of magnitude increase in average data rate obtainable at Ka-band relative to X-band makes the increased uncertainty a good trade. Lowbit error probabilities required by data compression are available both theoretically and practically with coding, at an infinitesimal power penalty rather than the 10 to 15 dB more power required to reduce error probabilities without coding. Advances are coming rapidly in coding, as with the new constraint-length 15 rate 1/4 convolutional code concatenated with the already existing Reed-Solomon code to be demonstrated on Galileo. In addition, high density spacecraft data storage will allow selective retransmissions, even from the edge of the Solar System, to overcome weather effects. In general, deep space communication was able to operate, and will continue to operate, closer to theoretical limits than any other form of communication. These include limits in antenna area and directivity, system noise temperature, coding efficiency, and everything else. The deep space communication links of the mid-90's and beyond will be compatible with new instruments and compression algorithms and represent a sensible investment in an overall end-to-end information system design

    Expected antenna utilization and overload

    Get PDF
    The trade-offs between the number of antennas at Deep Space Network (DSN) Deep-Space Communications Complex and the fraction of continuous coverage provided to a set of hypothetical spacecraft, assuming random placement of the space craft passes during the day. The trade-offs are fairly robust with respect to the randomness assumption. A sample result is that a three-antenna complex provides an average of 82.6 percent utilization of facilities and coverage of nine spacecraft that each have 8-hour passes, whereas perfect phasing of the passes would yield 100 percent utilization and coverage. One key point is that sometimes fewer than three spacecraft are visible, so an antenna is idle, while at other times, there aren't enough antennas, and some spacecraft do without service. This point of view may be useful in helping to size the network or to develop a normalization for a figure of merit of DSN coverage

    Application of the statistical theory of extreme values to spacecraft receivers

    Get PDF
    Statistical theory of extreme values application to spacecraft communication receiver

    A simple model for DSS-14 outage times

    Get PDF
    A model is proposed to describe DSS-14 outage times. Discrepancy Reporting System outage data for the period from January 1986 through September 1988 are used to estimate the parameters of the model. The model provides a probability distribution for the duration of outages, which agrees well with observed data. The model depends only on a small number of parameters, and has some heuristic justification. This shows that the Discrepancy Reporting System in the Deep Space Network (DSN) can be used to estimate the probability of extended outages in spite of the discrepancy reports ending when the pass ends. The probability of an outage extending beyond the end of a pass is estimated as around 5 percent

    Asynchronous multiple-access channel capacity

    Get PDF
    The capacity region for the discrete memoryless multiple-access channel without time synchronization at the transmitters and receivers is shown to be the same as the known capacity region for the ordinary multiple-access channel. The proof utilizes time sharing of two optimal codes for the ordinary multiple-access channel and uses maximum likelihood decoding over shifts of the hypothesized transmitter words

    A note on the wideband Gaussian broadcast channel

    Get PDF
    It is well known that for the Gaussian broadcast channel, timeshared coding is not as efficient as more sophisticated broadcast coding strategies. However, the relative advantage of broadcast coding over timeshared coding is shown to be small if the signal-to-noise ratios of both receivers are small. One surprising consequence of this is that for the wideband Gaussian broadcast channel, which is defined, broadcast coding offers no advantage over timeshared coding at all, and so timeshared coding is optimal

    Information and communication in the third millenium

    Get PDF
    This paper presents the author's views on what the information and communication industry will be like at the start of the third millennium, with emphasis on the implications to information and communication theorists. The main conclusions are that communication will play a greater role in Society in the third millennium. Communication Theory will be more concerned with channel complexity than with channel capacity. More communication theorists will be needed, and they will be more broadly trained

    Single-channel digital command-detection system

    Get PDF
    System, fabricated of highly-reliable digital logic elements, operates on binary pulse-code-modulated signals and derives internal synchronization from data signal. All-digital implementation of detector develops synchronization from data signal by computer cross-correlation of command modulation signal with its expected forms in sequence and adjusts detector phases in accordance with correlation peaks

    Data compressor Patent

    Get PDF
    Description of system for recording and reading out data related to distribution of occurrence of plurality of event
    corecore