"DEEP SPACE COMMUNICATIONS, WEATHER EFFECTS, AND ERROR CONTROL"

Edward C. Posner
Jet Propulsion Laboratory

Abstract

Deep space telemetry is and will remain signal-to-noise limited and vulnerable to interference. We do all we can to increase received signal power and decrease noise. This includes going to Ka-band (32 GHz down) in the mid-1990's to increase directivity. This is in spite of the increased difficulty of maintaining surface accuracy, pointing the spacecraft and ground antennas, and accommodating to weather uncertainty. The effects of a wet atmosphere can increase the noise temperature by a factor of 5 or more, even at X -band (8.5 GHz down), but the order of magnitude increase in average data rate obtainable at Ka-band relative to X-band makes the increased uncertainty a good trade. The 32 GHz frequency is likely to be the highest frequency used operationally from deep space in the next 15 to 20 years. Lowbit error probabilities required by data compression are available both theoretically and practically with coding, at an infinitesimal power penalty (.05-. 2 dB) rather than the $10-15 \mathrm{~dB}$ more power required to reduce error probabilities without coding. Advances are coming rapidly in coding, as with the new constraint-length 15 rate $1 / 4$ convolutional code concatenated with the already existing Reed-Solomon code to be demonstrated on Galileo. These advances will get NASA ready for the day when high-compression-ratio telemetry will require 10^{-6} to 10^{-9} bit error probability. In addition, high density spacecraft data storage will allow selective retransmissions, even from the edge of the Solar System, to overcome weather effects. In general, deep space communication has been able to operate, and will continue to operate, closer to theoretical limits than any other form of communication. These include limits in antenna area and directivity, system noise temperature, coding efficiency, and

everything else. The deep space communication links of the mid-90's and beyond will be compatible with new instruments and compression algorithms and represent a sensible investment in an overall end-toend information system design.

DEEP SPACE COMMUNICATIONS,
WEATHER EFFECTS, AND ERROR CONTROL
 BY EDMNARD C, POSNER
TELECOMMUNICATIONS AND DATA ACQUISITION OFFICE
JET PROPULSION LABORATORY
PRESENTED AT NASA SCIENTIFIC DATA COMPRESSION WORKSHOP SNOWBIRD, UTAH
MAY 3, 1988
telecommunications and data acQuisition
DEEP SPACE COMMUNICATIONS, WEATHER EFFECTS,
BY EDWARD C. POSNER, JPL

- uniqueness of deep space communication
- noise as a limiting factor
- frequency selection
- weather effects
- channel coding and data compression
- visible future telemetry trends
- summary
- WEAK SIGNALS - SIGNALS FROM EDGE OF SOLAR SYSTEM TO EARTH SUFFER MORE THAN 10
BILLION TIMES AS MUCH PATH LOSS AS THOSE FROM SYNCHRONOUS ORBIT
- IMPLIES CONSERVING SIGNAL POWER MORE IMPORTANT THAN OTHER
CONSTRAINTS, E.G., BANDWITH
- MAKES DEEP SPACE SIGNALS MORE VULNERABLE TO INTERFERENCE
- LONG PROPAGATION TIMES - ONE-WAY TIME FROM EDGE OF SOLAR SYSTEM 4 HOURS INSTEAD OF 0.1 SEC
FROM SYNCHRONOUS ORBIT
- IMPLIES ONE-WAY BULK DATA TRANSMISSION APPROPRIATE WITH LITTLE USE - MAKES IT HARD TO ADJUST SPACECRAFT BASED ON CONDITIONS AT EARTH
telecommunications and data acquisition
DEEP SPACE COMMUNICATIONS, WEATHER EFFECTS, AND ERROR CONTROL CHANNEL CAPACITY DETERMINED BY RECEIVED SIGNAL POWER, NOISE
POWER, AND (LESS IMPORTANT FOR DEEP SPACE) BANDWIDTH,
- NOISE POWER IS RECEIVED FROM
- cosmic background
- planet in beam, esp. venus
- earth's atmosphere (wet is worse) - earth itself (sidelobes, backlobes)

- receiver front end

- NOISE POWER SPECTRUM TENDS TO BE FLAT (WHITE) ACROSS BAND, OF HEIGHT OR POWER SPECTRAL DENSITY $\mathrm{N}_{\mathrm{O}}=\mathrm{kT}$
- k is boltzman's constant, t is system temperature in kelvins
- CHANNEL CAPACITY C IN BITS/SEC IS THEN
- $C=P_{\mathrm{R}} / \mathrm{N}_{0} 1 \mathrm{n} 2$ (P_{R} IS POWER RECEIVED)
telecommunications and data acquisition
DEEP SPACE COMMUNICATIONS, WEATHER EFFECTS, CONTR ERROR CONTROL

[^0] RTH'S WET ATMOSPHERE DEVASTATING BECAUSE SIGNAL ABSORBTION
RUIVALENT TO NOISE RADIATION

- EXAMPLE: 10% ABSORPTION SEEMS MINOR (0.46 dB LOSS),
BUT IMPLIES 10% NOISE RADIATION AT SAY $290 \mathrm{~K}: 29 \mathrm{~K}$
TEMPERATURE INCREASE, AROUND A 3 dB LOSS
- CONCLUSION: WEATHER IS RISK ABOVE S-BAND (2 GHz) - EARTH RADIATION INTO ANTENNA CAN BE REDUCED BY QUADRUPOD DESIGN, BECOMES LESS THAN 3 K BACKGROUND
- RECEIVER FRONT-END OPERATES COLD - DEPENDING ON QUANTUM-MECHANICAL PRINCIPLE, CAN

[^1]TELECOMMUNICATIONS AND DATA ACQUISITION
EFFECTS,
FREQUENCY SELECTION
HIGHER MICROWAVE FREQUENCIES WITH DIRECTIONAL ANTENNAS
RESULT IN MORE RECEIVED SIGNAL POWER, PROPORTIONAL TO SQUARE
OF FREQUENCY

- ANTENNA POINTING HARDER; NEEDED ANGULAR ACCURACY LINEAR IN
FREQUENCY FOR FIXED ANTENNA DIAMETERS ON SPACECRAFT
AND GROUND
- SURFACE ACCURACY REQUIRED LINEAR IN FREQUENCY
- WEATHER EFFECTS ON SYSTEM TEMPERATURE GENERALLY MORE
PRONOUNCED AT HIGHER MICROWAVE FREQUENCIES
- WIND ALSO IMPORTANT FOR GROUND ANTENNA POINTING AT LARGER
DIAMETERS AND HIGHER FREQUENCIES
- PLANET IN RECEIVE BEAM MORE IMPORTANT NOISE SOURCE AS BEAM
NARROWS WITH HIGHER FREQUENCIES - AT VENUS, EXCESS NOISE AT $2 \mathrm{GHz}, 70-\mathrm{METER}$, VENUS CLOSEST
APPROACH, IS ABOUT $11 \mathrm{~K}, \mathrm{BUT}$ AT 32 GHz VENUS FILLS BEAM,
600 K NOISE TEMPERATURE INCREASE
- THUS, ALL OTHER EFFECTS TEND TO REDUCE DATA RATE AS
FREQUENCY INCREASES
- NEVERTHELESS, CAREFUL ENGINEERING AND WEATHER STRATEGY MAKE HIGHER FREQUENCIES FOR DEEP SPACE TELEMETRY GOOD INVESTMENT - Ka -band (32 GHz) likely to be highest frequency for routine
TELECOMMUNICATIONS AND DATA ACQUISITION
DEEP SPACE COMMUNICATIONS, WEATHER
EFFECTS,
telecommunications and data acquisition
WEATHER EFFECTS
- UNCERTAINTY IN WEATHER AND LONG PROPAGATION DELAYS CAUSE
SOME PROBABILITY OF LOSS OF DEEP SPACE DATA AT X-BAND (8.5 GHz)
AND HIGHER FREQUENCIES
> - LINK OPERATES WITH STEEP PERFORMANCE CURVE
> - VOYAGER AT URANUS AND NEPTUNE WORKED/WILL WORK AT
90% WEATHER CONFIDENCE
telecommunications and data acquisition
DEEP SPACE COMMUNICATIONS, WEATHER EFFECTS,
AND ERROR CONTROL
ORIGINAL PAGE IS
OF POOR QUALITY

- SHANNON TELLS US THAT A LARGE NUMBER OF BITS SHOULD BE ENCODED
INTO A LONG BLOCK OR STRING AND THE RECEIVED WAVEFORM
DETECTED AS A UNIT
- EXTRA POWER THEORETICALLY NEEDED TO DROP BIT ERROR PROBABILITY
FROM $10-3$ TO "ZERO" IS ONLY 0.05 dB
- CODING GAIN RELATIVE TO NO CODING INCREASES AS DESIRED BIT
ERROR PROBABILITY DROPS
- AT $10-6$ BIT ERROR PROBABILITY, THEORETICAL CODING GAIN ACHIEVABLE
IS AROUND 12 dB
- LOW BIT ERROR PROBABILITY FROM DEEP SPACE BECOMING MORE
- more extensive use of data compression
- trend toward automated ground operations
- more spacecraft intelligence with after-the-fact reporting
telecommunications and data acquisition

CODING COULD INTERACT MORE CLOSELY WITH INSTRUMENTS IN OTHER
WAYS THAN JUST THROUGH LOW BIT ERROR PROBABILITY, BY
- USING SOURCE STATIStics to improve decoder performance as
- Combined compression and coding
- Shannon tell us that theoretical power efficiency does not drop if Combine the two
- COMPLEXITY CAN DROP GREATLY
telecommunications and data acquisition
- CODING Closer to shannon limit

- HIGHER FREQUENCIES: 32 GHz DOWN (Ka -BAND) FOR CASSINI AND MARS
- more data compression requiring lower bit error probabilities - MUCH MORE MASSIVE SPACECRAFT DATA STORAGE BY LATE 1990's PARTIALLY ALLEVIATING WEATHER EFFECTS PROBLEM
- DEMAND FOR MUCH higher data rates to accommodate SPECTROMETERS
- Still need Very low bit error probabilities
- decoders will have to operate fast
- BEGINNING OF DEEP SPACE TELEMETRY OPERATING NEAR BANDWIDTH LIMITS
- CONSERVING SIGNAL POWER WILL STILL BE IMPORTANT
- SUGGESTS COMBINED MODULATION AND CODING
telecommunications and data acquisition

DEEP SPACE TELEMETRY IS AND WILL REMAIN SIGNAL-TO-NOISE LIMITED
- We do all we can to increase received signal power and
decrease noise
WEATHER GREATLY INCREASES NOISE UNPREDICTABLY AT DEEP SPACE
FREQUENCIES
LOW BIT ERROR PROBABILITIES AT HIGH POWER EFFICIENCY OBTAINABLE
- FUTURE dEEP SPACE TELEMETRY WILL hAVE EXQUISITELY CODED HIGH bit rate highly compressed data with selective retransmission TO OVERCOME WEATHER EFFECTS
- DEEP SPACE COMMUNICATION OPERATES CLOSER TO THEORETICAL LIMITS THAN ANY OTHER FORM OF COMMUNICATION

[^0]: 3 K COSMIC BACKGROUND AND PLANET IN BEAM ARE NOT CONTROLLABLE NOISE SOURCES

[^1]: OPERATE WARMER THAN NOISE TEMPERATURE CONTRIBUTION,

