1,610 research outputs found
Reconsidering the origin of the 21 micron feature: Oxides in carbon-rich PPNe?
The origin of the so-called "21 micron" feature which is especially prominent
in the spectra of some carbon-rich protoplanetary nebulae (PPNe}) is the matter
of a lively debate. A large number of potential band carriers have been
presented and discarded within the past decade. The present paper gives an
overview of the problems related to the hitherto proposed feature
identifications, including the recently suggested candidate carrier silicon
carbide. We also discuss the case for spectroscopically promising oxides.
SiC is shown to produce a strong resonance band at 20-21 micron if coated by
a layer of silicon dioxide. At low temperatures, core-mantle particles composed
of SiC and amorphous SiO indeed have their strongest spectral signature at
a position of 20.1 micron, which coincides with the position of the "21 micron"
emission band.
The optical constants of another candidate carrier that has been relatively
neglected so far -- iron monoxide -- are proven to permit a fairly accurate
reproduction of the "21 micron" feature profile as well, especially when
low-temperature measurements of the infrared properties of FeO are taken into
account. As candidate carrier of the "21 micron" emission band, FeO has the
advantage of being stable against further oxidation and reduction only in a
narrow range of chemical and physical conditions, coinciding with the fact that
the feature, too, is detected in a small group of objects only. However, it is
unclear how FeO should form or survive particularly in carbon-rich PPNe.Comment: 28 pages, 15 figures, accepted for publication in ApJ (December
Lyapunov spectra of billiards with cylindrical scatterers: comparison with many-particle systems
The dynamics of a system consisting of many spherical hard particles can be
described as a single point particle moving in a high-dimensional space with
fixed hypercylindrical scatterers with specific orientations and positions. In
this paper, the similarities in the Lyapunov exponents are investigated between
systems of many particles and high-dimensional billiards with cylindrical
scatterers which have isotropically distributed orientations and homogeneously
distributed positions. The dynamics of the isotropic billiard are calculated
using a Monte-Carlo simulation, and a reorthogonalization process is used to
find the Lyapunov exponents. The results are compared to numerical results for
systems of many hard particles as well as the analytical results for the
high-dimensional Lorentz gas. The smallest three-quarters of the positive
exponents behave more like the exponents of hard-disk systems than the
exponents of the Lorentz gas. This similarity shows that the hard-disk systems
may be approximated by a spatially homogeneous and isotropic system of
scatterers for a calculation of the smaller Lyapunov exponents, apart from the
exponent associated with localization. The method of the partial stretching
factor is used to calculate these exponents analytically, with results that
compare well with simulation results of hard disks and hard spheres.Comment: Submitted to PR
Goldstone modes in Lyapunov spectra of hard sphere systems
In this paper, we demonstrate how the Lyapunov exponents close to zero of a
system of many hard spheres can be described as Goldstone modes, by using a
Boltzmann type of approach. At low densities, the correct form is found for the
wave number dependence of the exponents as well as for the corresponding
eigenvectors in tangent-space. The predicted values for the Lyapunov exponents
belonging to the transverse mode are within a few percent of the values found
in recent simulations, the propagation velocity for the longitudinal mode is
within 1%, but the value for the Lyapunov exponent belonging to the
longitudinal mode deviates from the simulations by 30%. For higher densities,
the predicted values deviate more from the values calculated in the
simulations. These deviations may be due to contributions from ring collisions
and similar terms, which, even at low densities, can contribute to the leading
order.Comment: 12 pages revtex, 5 figures, accepted by Physical Review
CMOS front-end for the MDT sub-detector in the ATLAS Muon Spectrometer, development and performance
The Lyapunov spectrum of the many-dimensional dilute random Lorentz gas
For a better understanding of the chaotic behavior of systems of many moving
particles it is useful to look at other systems with many degrees of freedom.
An interesting example is the high-dimensional Lorentz gas, which, just like a
system of moving hard spheres, may be interpreted as a dynamical system
consisting of a point particle in a high-dimensional phase space, moving among
fixed scatterers. In this paper, we calculate the full spectrum of Lyapunov
exponents for the dilute random Lorentz gas in an arbitrary number of
dimensions. We find that the spectrum becomes flatter with increasing
dimensionality. Furthermore, for fixed collision frequency the separation
between the largest Lyapunov exponent and the second largest one increases
logarithmically with dimensionality, whereas the separations between Lyapunov
exponents of given indices not involving the largest one, go to fixed limits.Comment: 8 pages, revtex, 6 figures, submitted to Physical Review
Dusty shells surrounding the carbon variables S Scuti and RT Capricorni
For the Mass-loss of Evolved StarS (MESS) programme, the unprecedented
spatial resolution of the PACS photometer on board the Herschel space
observatory was employed to map the dusty environments of asymptotic giant
branch (AGB) and red supergiant (RSG) stars. Among the morphologically
heterogeneous sample, a small fraction of targets is enclosed by spherically
symmetric detached envelopes. Based on observations in the 70 {\mu}m and 160
{\mu}m wavelength bands, we investigated the surroundings of the two carbon
semiregular variables S Sct and RT Cap, which both show evidence for a history
of highly variable mass-loss. S Sct exhibits a bright, spherically symmetric
detached shell, 138" in diameter and co-spatial with an already known CO
structure. Moreover, weak emission is detected at the outskirts, where the
morphology seems indicative of a mild shaping by interaction of the wind with
the interstellar medium, which is also supported by the stellar space motion.
Two shells are found around RT Cap that were not known so far in either dust
emission or from molecular line observations. The inner shell with a diameter
of 188" shows an almost immaculate spherical symmetry, while the outer ~5'
structure is more irregularly shaped. MoD, a modification of the DUSTY
radiative transfer code, was used to model the detached shells. Dust
temperatures, shell dust masses, and mass-loss rates are derived for both
targets
Lyapunov instability for a periodic Lorentz gas thermostated by deterministic scattering
In recent work a deterministic and time-reversible boundary thermostat called
thermostating by deterministic scattering has been introduced for the periodic
Lorentz gas [Phys. Rev. Lett. {\bf 84}, 4268 (2000)]. Here we assess the
nonlinear properties of this new dynamical system by numerically calculating
its Lyapunov exponents. Based on a revised method for computing Lyapunov
exponents, which employs periodic orthonormalization with a constraint, we
present results for the Lyapunov exponents and related quantities in
equilibrium and nonequilibrium. Finally, we check whether we obtain the same
relations between quantities characterizing the microscopic chaotic dynamics
and quantities characterizing macroscopic transport as obtained for
conventional deterministic and time-reversible bulk thermostats.Comment: 18 pages (revtex), 7 figures (postscript
A discretized integral hydrodynamics
Using an interpolant form for the gradient of a function of position, we
write an integral version of the conservation equations for a fluid. In the
appropriate limit, these become the usual conservation laws of mass, momentum
and energy. We also discuss the special cases of the Navier-Stokes equations
for viscous flow and the Fourier law for thermal conduction in the presence of
hydrodynamic fluctuations. By means of a discretization procedure, we show how
these equations can give rise to the so-called "particle dynamics" of Smoothed
Particle Hydrodynamics and Dissipative Particle Dynamics.Comment: 10 pages, RevTex, submitted to Phys. Rev.
Impact of excess NOx emissions from diesel cars on air quality, public health and eutrophication in Europe
Diesel cars have been emitting four to seven times more NOx in on-road driving than in type approval tests. These ‘excess emissions’ are a consequence of deliberate design of the vehicle’s after-treatment system, as investigations during the ‘Dieselgate’ scandal have revealed. Here we calculate health and environmental impacts of these excess NOx emissions in all European countries for the year 2013. We use national emissions reported officially under the UNECE Convention for Long-range Transport of
Atmospheric Pollutants and employ the EMEP MSC-W Chemistry Transport Model and the GAINS
Integrated Assessment Model to determine atmospheric concentrations and resulting impacts. We compare with impacts from hypothetical emissions where light duty diesel vehicles are assumed to emit only as much as their respective type approval limit value or as little as petrol cars of the same age.
Excess NO2 concentrations can also have direct health impacts, but these overlap with the impacts from particulate matter (PM) and are not included here. We estimate that almost 10 000 premature deaths from PM2.5 and ozone in the adult population (age >30 years) can be attributed to the NOx emissions from diesel cars and light commercial vehicles in EU28 plus Norway and Switzerland in 2013. About 50% of these could have been avoided if diesel limits had been achieved also in on-road driving; and had diesel cars emitted as little NOx as petrol cars, 80% of these premature deaths could have been avoided. Ecosystem eutrophication impacts (critical load exceedances) from the same diesel vehicles would also have been reduced at similar rates as for the health effects
- …
