199 research outputs found

    Methods for evaluating physical processes in strong external fields at e+e- colliders: Furry picture and quasi-classical approach

    Full text link
    Future linear colliders designs, ILC and CLIC, are expected to be powerful machines for the discovery of Physics Beyond the Standard Model and subsequent precision studies. However, due to the intense beams (high luminosity, high energy), strong electromagnetic fields occur in the beam-beam interaction region. In the context of precision high energy physics, the presence of such strong fields may yield sensitive corrections to the observed electron-positron processes. The Furry picture of quantum states gives a conceptually simple tool to treat physics processes in an external field. A generalization of the quasi-classical operator method (QOM) as an approximation is considered too.Comment: 14 pages, 6 figures, to appear in the conference proceedings of the Corfu Summer Institute 201

    Neutralinos betray their singlino nature at the ILC

    Get PDF
    It is one of the most challenging tasks at the Large Hadron Collider and at a future Linear Collider not only to observe physics beyond the Standard Model, but to clearly identify the underlying new physics model. In this paper we concentrate on the distinction between two different supersymmetric models, the MSSM and the NMSSM, as they can lead to similar low energy spectra. The NMSSM adds a singlet superfield to the MSSM particle spectrum and simplifies embedding a SM-like Higgs candidate with the measured mass of about 125.5 GeV. In parts of the parameter space the Higgs sector itself does not provide sufficient indications for the underlying model. We show that exploring the gaugino/higgsino sectors could provide a meaningful way to distinguish the two models. Assuming that only the lightest chargino and neutralino masses and polarized cross sections e+eχ~i0χ~j0e^+e^-\to \tilde{\chi}^0_i\tilde{\chi}^0_j, χ~i+χ~j\tilde{\chi}^+_i\tilde{\chi}^-_j are accessible at the linear collider, we reconstruct the fundamental MSSM parameters M1M_1, M2M_2, μ\mu, tanβ\tan\beta and study whether a unique model distinction is possible based on this restricted information. Depending on the singlino admixture in the lightest neutralino states, as well as their higgsino or gaugino nature, we define several classes of scenarios and study the prospects of experimental differentiation.Comment: 20 pages, 11 figure

    Burst-mode electronic dispersion compensation in long reach PONs

    Get PDF
    Long reach passive optical networks (LR-PONs), which integrate fibre-to-the-home with metro networks, have been the subject of intensive research in recent years and are considered one of the most promising candidates for the next generation of optical access networks. Such systems ideally have reaches greater than 100km and bit rates of at least 10Gb/s per wavelength in the downstream and upstream directions. Due to the limited equipment sharing that is possible in access networks, the laser transmitters in the terminal units, which are usually the most expensive components, must be as cheap as possible. However, the requirement for low cost is generally incompatible with the need for a transmitter chirp characteristic that is optimised for such long reaches at 10Gb/s, and hence dispersion compensation is required. In this thesis electronic dispersion compensation (EDC) techniques are employed to increase the chromatic dispersion tolerance and to enhance the system performance at the expense of moderate additional implementation complexity. In order to use such EDC in LR-PON architectures, a number of challenges associated with the burst-mode nature of the upstream link need to be overcome. In particular, the EDC must be made adaptive from one burst to the next (burst-mode EDC, or BM-EDC) in time scales on the order of tens to hundreds of nanoseconds. Burst-mode operation of EDC has received little attention to date. The main objective of this thesis is to demonstrate the feasibility of such a concept and to identify the key BM-EDC design parameters required for applications in a 10Gb/s burst-mode link. This is achieved through a combination of simulations and transmission experiments utilising off-line data processing. The research shows that burst-to-burst adaptation can in principle be implemented efficiently, opening the possibility of low overhead, adaptive EDC-enabled burst-mode systems

    Conservative dynamics of binary systems to fourth Post-Newtonian order in the EFT approach II: Renormalized Lagrangian

    Full text link
    We complete the derivation of the conservative dynamics of binary systems to fourth Post-Newtonian (4PN) order in the effective field theory (EFT) approach. We present a self-contained (ambiguity-free) computation of the renormalized Lagrangian, entirely within the confines of the PN expansion. While we confirm the final results reported in the literature, we clarify several issues regarding intermediate infrared (IR) and ultraviolet (UV) divergences, as well as the renormalization procedure. First, we properly identify the IR and UV singularities using (only) dimensional regularization and the method of regions, which are the pillars of the EFT formalism. This requires a careful study of scaleless integrals in the potential region, as well as conservative contributions from radiation modes due to tail effects. As expected by consistency, the UV divergences in the near region (due to the point-particle limit) can be absorbed into two counter-terms in the worldline effective theory. The counter-terms can then be removed by field redefinitions, such that the renormalization scheme-dependence has no physical effect to 4PN order. The remaining IR poles, which are spurious in nature, are unambiguously removed by implementing the zero-bin subtraction in the EFT approach. The procedure transforms the IR singularities into UV counter-parts. As anticipated, the left-over UV poles explicitly cancel out against UV divergences in conservative terms from radiation-reaction, uniquely determining the gravitational potential. Similar artificial IR/UV poles, which are intimately linked to the split into regions, are manifest at lower orders. Starting at 4PN, both local- and nonlocal-in-time contributions from the radiation region enter in the conservative dynamics. Neither additional regulators nor ambiguity-parameters are introduced at any stage of the computations.Comment: 40 pages. 8 figures. v2: Published versio

    Reduced statistical fluctuations of the position of an object partitioning in two its environment

    Get PDF
    Through hard‐disk simulations and theoretical considerations on the movement of an object that partitions a microtubule filled with small particles, we find that the vibrations typical of thermal equilibrium are reached after a time that increases exponentially with the number of particles involved. The result is a mechanism capable of breaching, on accessible time scales, the ergodic constraints in nano‐scale systems

    Three-dimensional optical beam propagation and solitons in photorefractive crystals

    Get PDF
    The model equations for beam propagation in photorefractive material are simplified under appropriate conditions. The possibility of obtaining bright and dark screening soliton solutions in 2+12+1 dimensions is investigated, and, whenever possible, their amplitude–size relation is displayed

    Assembly and functional analysis of an S/MAR based episome with the cystic fibrosis transmembrane conductance regulator gene

    Get PDF
    Improving the efficacy of gene therapy vectors is still an important goal toward the development of safe and efficient gene therapy treatments. S/MAR (scaffold/matrix attached region)-based vectors are maintained extra-chromosomally in numerous cell types, which is similar to viral-based vectors. Additionally, when established as an episome, they show a very high mitotic stability. In the present study we tested the idea that addition of an S/MAR element to a CFTR (cystic fibrosis transmembrane conductance regulator) expression vector, may allow the establishment of a CFTR episome in bronchial epithelial cells. Starting from the observation that the S/MAR vector pEPI-EGFP (enhanced green fluorescence protein) is maintained as an episome in human bronchial epithelial cells, we assembled the CFTR vector pBQ-S/MAR. This vector, transfected in bronchial epithelial cells with mutated CFTR, supported long term wt CFTR expression and activity, which in turn positively impacted on the assembly of tight junctions in polarized epithelial cells. Additionally, the recovery of intact pBQ-S/MAR, but not the parental vector lacking the S/MAR element, from transfected cells after extensive proliferation, strongly suggested that pBQ-S/MAR was established as an episome. These results add a new element, the S/MAR, that can be considered to improve the persistence and safety of gene therapy vectors for cystic fibrosis pulmonary disease

    A Conceptual View on Trajectories

    Get PDF
    Analysis of trajectory data is the key to a growing number of applications aiming at global understanding and management of complex phenomena that involve moving objects (e.g. worldwide courier distribution, city traffic management, bird migration monitoring). Current DBMS support for such data is limited to the ability to store and query raw movement (i.e. the spatio-temporal position of an object). This paper explores how conceptual modeling could provide applications with direct support of trajectories (i.e. movement data that is structured into countable semantic units) as a first class concept. A specific concern is to allow enriching trajectories with semantic annotations allowing users to attach semantic data to specific parts of the trajectory. Building on a preliminary requirement analysis and an application example, the paper proposes two modeling approaches, one based on a design pattern, the other based on dedicated data types, and illustrates their differences in terms of implementation in an extended-relational context

    A case of disseminated BCG infection in a daughter of Italian immigrants in Switzerland

    Get PDF
    Bacillus Calmette-Guerin (BCG) is a vaccine against tuberculosis and contains a live, attenuated strain of Mycobacterium bovis as its essential constituent. Being a live, attenuated strain with potential pathogenicity, BCG can cause different complications, both near the inoculation site and through blood dissemination, especially in patients with immunodeficiency. IFN-gamma R1 deficiency is an autosomal recessively inherited immunodeficiency characterized by predisposition to infections with intracellular pathogens, in particular mycobacteria. We report a rare case of chronic osteomyelitis lasting 30 years due to BCG in a woman with IFN-gamma R1 deficiency who had previous clinical history of multi-organ BCGitis. Diagnosis of chronic osteomyelitis was confirmed by an 18-fluorine fluorodeoxyglucose positron emission tomography combined with CT scan (18F-FDG PET/CT). In children with a history of BCG vaccination and chronic unexplained infections, a clinical suspicion of BCG-related disease must arise, and a reason of immunodeficiency should be sought
    corecore