59 research outputs found

    A 3D multi-objective optimization planning algorithm for wireless sensor networks

    Get PDF
    The complexity of planning a wireless sensor network is dependent on the aspects of optimization and on the application requirements. Even though Murphy's Law is applied everywhere in reality, a good planning algorithm will assist the designers to be aware of the short plates of their design and to improve them before the problems being exposed at the real deployment. A 3D multi-objective planning algorithm is proposed in this paper to provide solutions on the locations of nodes and their properties. It employs a developed ray-tracing scheme for sensing signal and radio propagation modelling. Therefore it is sensitive to the obstacles and makes the models of sensing coverage and link quality more practical compared with other heuristics that use ideal unit-disk models. The proposed algorithm aims at reaching an overall optimization on hardware cost, coverage, link quality and lifetime. Thus each of those metrics are modelled and normalized to compose a desirability function. Evolutionary algorithm is designed to efficiently tackle this NP-hard multi-objective optimization problem. The proposed algorithm is applicable for both indoor and outdoor 3D scenarios. Different parameters that affect the performance are analyzed through extensive experiments; two state-of-the-art algorithms are rebuilt and tested with the same configuration as that of the proposed algorithm. The results indicate that the proposed algorithm converges efficiently within 600 iterations and performs better than the compared heuristics

    Wireless Sensor Network Application for Environmental Impact Analysis and Control

    Get PDF
    Traditional Wireless Sensor Networks (WSNs) applications take advantage of the new low cost low power consuming integrated sensors that appear with the evolution of Micro Electromechanical Systems (MEMS). This kind of sensors is suitable for WSNs, due to the reduced size, their interfaces and their low power consumption. However, during the last years, WSNs have found new niches of application where such sensors are not usable, due to the nature of the parameter to be measured. In these scenarios, new approaches must be taken in order to satisfy the requirements. But new problems appear, like cost and size increase. In this paper, an application where parameters like gas concentration, conductivity or pH have to be measured in a coffee factory is presented. The drawbacks of such a solution are highlighted, and the solution in the field of the wireless sensor networks adopted is detailed

    Testbed architecture and framework for debugging wireless sensor networks

    Get PDF
    The Internet of Things has emerged as one of the key aspects for the future of the Wireless Sensor Networks and their impact on new applications in real environments. This concept poses new challenges in the implementation, testing and debugging of efficient, robust and reliable technologies under this paradigm, specially in a pre-deployment stage where HW-SW platform prototypes are to be optimized prior to their inclusion in actual deployments. In this work, the design and implementation of a complete testbed infrastructure as a support tool for improving the effectiveness and the applicability of sensor nodes to real systems is presented, focused on the modular architecture of the Cookie platform and aiming to help developers to integrate and improve the whole WSN operation to final real-world scenarios

    A reliable support tool for monitoring, testing and debugging wireless sensor cookie nodes

    Get PDF
    In this work a WSN Support Tool for developing, testing, monitoring and debugging new application prototypes in a reliable and robust way is proposed, by combining a Hardware -Software Integration Platform with the implementation of a parallel communication channel that helps users to interact to the experiments in runtime without interfering in the operation of the wireless network. As a pre-deployment tool, prototypes can be validated in a real environment before implementing them in the final application, aiming to increase the effectiveness and efficiency of the technology. This infrastructure is the support of CookieLab: a WSN testbed based on the Cookie Nodes Platform

    Testbed infrastructure for debugging, analyzing and optimizing WSN nodes based on a modular HW-SW architecture

    Full text link
    The Internet of Things has emerged as one of the key aspects to the future of the Wireless Sensor Networ ks and their impact in new applications in real environments. This concept poses new challenges in the implementation, testing and assessment of efficient, robust and reliable technologies and prototypes under this paradigm. In this way, the run-time remote interaction with the deployment of hundreds of in-f ield nodes in which developers have to be able to control and manage the wireless network anywhere at any time also implies new objectives to be achieved in order to adapt or even create new HW-SW platforms. In this work, the design and implementation of a complete testbed infrastructure as a support tool for improving the effectiveness and the applicability of sensor nodes to real applications is presented, focused on the m odular architecture of the Cookie hardware platform and aiming to help developers to integrate and optimize the whole WSN system to the final applications in the real world

    A Novel Method for Radio Propagation Simulation Based on Automatic 3D Environment Reconstruction

    Get PDF
    In this paper, a novel method to simulate radio propagation is presented. The method consists of two steps: automatic 3D scenario reconstruction and propagation modeling. For 3D reconstruction, a machine learning algorithm is adopted and improved to automatically recognize objects in pictures taken from target regions, and 3D models are generated based on the recognized objects. The propagation model employs a ray tracing algorithm to compute signal strength for each point on the constructed 3D map. Our proposition reduces, or even eliminates, infrastructure cost and human efforts during the construction of realistic 3D scenes used in radio propagation modeling. In addition, the results obtained from our propagation model proves to be both accurate and efficien

    Arquitectura de Radios Wake-up para redes de sensores inalámbricas basada en FPGA

    Get PDF
    En este artículo se muestra la implementación de una Wake-up radio para nodos de redes de sensores inalámbricas basada en FPGAS de ultra bajo consumo. El objetivo principal es evaluar la utilización de dispositivos de lógica programable para realizar el procesamiento de los mensajes y explotar su velocidad de, flexibilidad y bajo consumo comparado con las implementaciones más tradicionales basadas en ASIC o microcontroladores

    Wake up Radio Architecture for Wireless Sensor Networks Using an Ultra Low Power FPGA

    Get PDF
    In this paper an implementation of a Wake up Radio(WuR) with addressing capabilities based on an ultra low power FPGA for ultra low energy Wireless Sensor Networks (WSNs) is proposed. The main goal is to evaluate the utilization of very low power configurable devices to take advantage of their speed, flexibility and low power consumption instead of the traditional approaches based on ASICs or microcontrollers, for communication frame decoding and communication data control

    Ultra Low Power FPGA-Based Architecture for Wake-up Radio in Wireless Sensor Networks

    Get PDF
    In this paper the capabilities of ultra low power FPGAs to implement Wake-up Radios (WuR) for ultra low energy Wireless Sensor Networks (WSNs) are analyzed. The main goal is to evaluate the utilization of very low power configurable devices to take advantage of their speed, flexibility and low power consumption instead of the more common approaches based on ASICs or microcontrollers. In this context, energy efficiency is a key aspect, considering that usually the instant power consumption is considered a figure of merit, more than the total energy consumed by the application

    Wake-up architecture for Wireless sensor nodes based on ultra low power FPGA

    Get PDF
    In this work a novel wake-up architecture for wireless sensor nodes based on ultra low power FPGA is presented. A simple wake up messaging mechanism for data gathering applications is proposed. The main goal of this work is to evaluate the utilization of low power configurable devices to take advantage of their speed, flexibility and low power consumption compared with traditional approaches, based on ASICs or microcontrollers, for frame decoding and data control. A test bed based on infrared communications has been built to validate the messaging mechanism and the processing architecture
    corecore