
Testbed Architecture and Framework for Debugging
Wireless Sensor Networks

Gabriel Muiica, Jorge Portilla, Teresa Riesgo

Abstract—The Internet of Things has emerged as one of the key
aspects for the future of the Wireless Sensor Networks and their
impact on new applications in real environments. This concept poses
new challenges in the implementation, testing and debugging of
efficient, robust and reliable technologies under this paradigm,
specially in a pre-deployment stage where HW-SW platform
prototypes are to be optimized prior to their inclusion in actual
deployments. In this work, the design and implementation of a
complete testbed infrastructure as a support tool for improving the
effectiveness and the applicability of sensor nodes to real systems is
presented, focused on the modular architecture of the Cookie
platform and aiming to help developers to integrate and improve the
whole WSN operation to final real-world scenarios.

Keywords — wireless sensor networks, testbed infrastructure, HW-SW
platform, backchannel architecture, node modularity.

I. INTRODUCTION

During the last years the paradigm of the Wireless Sensor
Networks (WSN) and the Internet of Things (IoT) has been
strongly involved in most of the new technologies and research
lines for different application fields, such as smart cities, industrial
environments, security issues, energy harvesting and home
automation, aiming to interact with the environment remotely
anywhere at any time. One of the key topics in which the concept
of IoT is having more and more impact is in the WSN applications
[1], where hundreds of small devices have to be controlled,
managed, and monitored in an efficient and reliable way, so that
feedbacks from the in-field deployment are to be obtained.
However, the challenges that involve the WSN technology, such as
power consumption and long-term autonomy, low-data-range
based wireless protocols, limited bandwidth, limited processing
resource and memory, pose much more issues to be covered in
order to effectively expand its applicability to real scenarios.

In this way, the creation of novel testbed infrastructures [2] for
experimenting and optimizing WSN technologies must be enclosed
by flexible architectures and the ease-of-use on the management,
monitoring and reconfiguration of sensor nodes remotely from any
place, so that new development approaches and prototypes can be
tested. Most of the current testbed platforms are based on
commercial hardware which are widely used but start being
obsoletes and much less flexible for new technologies that come
out with this new world of the WSN and the IoT. Besides, the old
node platforms that are used in most of the available testbeds are
limited in case of testing new hardware technologies, due to the
lack of well-defined hardware debugging capabilities. These issues
motivate the creation of a completely new testbed architecture in
order to run experiments related to this novel approach within the
WSN technology, by continuing developing the Cookies Nodes
technology [3] which offers a HW-SW integration platform that
accomplishes key features to the future of the WSN within the IoT:
Modularity, flexibility, scalability, heterogeneity and repeatability.

The work proposed in this paper is then focused on having a
complete feedback to a real Cookie-based WSN by combining a
high performance backchannel infrastructure (Based on Ethernet
and Wi-Fi connectivity) with the improvement of a memory-
segmentation-based architecture to allow users to partially and
remotely reprogram their experiments in a dynamic way, by

providing a mechanism for modifying specific components of the
system. Moreover, new software support components for
increasing the robustness of the HW-SW platform are also
proposed, in order to help users to debug and experiment in
runtime with a real deployment scenario in an easy but reliable
way, to optimize their prototypes from the laboratory stage before
including them in the final application, so that the efficiency and
effectiveness of the nodes can be assured.

II. RELATED WORK

Several testbed platforms have been proposed during the last
years, focusing on testing prototypes and applications before final
implementations. One of the most well-known testbeds is Motelab
[4] that is an open access platform for testing experiments based on
MicaZ motes. Nodes can be accessed by a PHP web server. In
Kansei [5] the concept of simulation over a testbed support
platform is proposed, by implementing 210 sensor nodes, which
are connected to Linux-based stargates that control the data
collections. SignetLab [6] implements 48 EyesIFXv2 motes that
are connected to tiered USB hubs, which are also connected to a
single PC in order to control, manage and reprogram the deployed
nodes by using a Java based application. In terms of testbeds
focused on final application scenarios, different approaches have
been presented in recent years, such as WINTeR [7], in which a
large scale industrial deployment is proposed in order to evaluate
and support industrial applications, based on programmable motes
controlled by a web interface. This testbed is based on two
backchannels, the first one for controlling the data exchange to the
nodes (Ethernet connection) and the second one for powering the
nodes (USB connection). In [8] an in-field tracking and
localization testbed was developed in a manufacturing lab scenario
in order to model the effects that can be found in real deployments
with similar conditions, by using TelosB connected to a central
server which runs a java-based software application to control the
experiments. There are also approaches that propose the
management of the testbeds by using the main wireless link,
without then implementing backchannel infrastructures (which is
bandwidth-consuming and system intrusive when debugging), such
as the work presented in [9], where a software component to be
installed in the nodes is proposed combined with a web interface to
control and manage the deployment using the wireless link.

Most of the current testbed platforms aim to test software
prototypes by using the well-known TelosB or MicaZ nodes,
which are becoming obsolete due to its low flexibility and their
limited adaptation to hardware expansion and testing. Apart from
it, the capabilities of dynamic experimentation by performing
remote and partial reprogramming of the WSN testbed platform is
not covered in most of the available systems, or is only done by
means of TinyOS component replacement, which is totally
oriented to developments under this operating system.

III. SYSTEM ARCHITECTURE - CONSIDERATIONS, REQUIREMENTS
AND CHALLENGES

Based on the proposed concept of a WSN Testbed platform
which aims to provide developers and researchers with a complete
set of HW-SW support tools beyond simulation capabilities, this

testbed infrastructure is focused on allowing users to test their
prototypes, new algorithms and built-protocols in a real
environment, based on a completed pre-deployment scenario
where the platform can be programmed and configured with
parameters related to the experiment to be performed in runtime.
The results of the tests are based on real measurements and the real
behavior of the system, not as an interpolation of modeled
behaviors, which is the case of WSN simulations, where
assumptions are done due to computational and modeling
limitations. Users can then access to the parameters of every node,
gather actual data of the hardware platform, assess the network
performance and, in case of needed, modify configurations in order
to change measurement parameters or verify functional blocks. By
using the proposed backchannel-based architecture, developers are
provided with a way to interact with the sensor nodes and the
whole network in a non-intrusive way, in contraposition with the
limitations of the main-network-based/backchannel-free testbeds.

In order to face such a challenging goal, four main aspects and
considerations have to be covered for the success of the testbed
architecture that is being proposed, as split below.

Remote access & reprogramming – One of the key aspects
related to the testbed capabilities is the ability to modify not only
parameters regarding configurations of the nodes, but also entire
algorithms, functional blocks or even the whole application in an
remote, efficient and reliable fashion. In this context, the use of an
independent channel to replace or download programming files
into the core of the nodes without using the main wireless link
takes place. The backchannel shall allow modifying the memory
flash of the devices where the experiments are running, with no
interference with the wireless network itself.

Energy Assessment – one of the research targets in WSNs is the
energy efficiency, focusing on extending the lifetime and
autonomy of the systems in their final operation. In this way, the
testbed infrastructure has to provide the ability to analyze the
performance of the nodes in terms of energy consumption in
runtime, in order to define the energetic behavior of specific
prototypes as well as apply strategies to turn on/off nodes so that
the self-reconfiguration of the network in terms of topology
changes can be monitored remotely (which is also intended to
evaluate implementations such as routing protocols and MAC
algorithms). In order to accomplish this, the testbed architecture
has to be capable of providing not only strategies to power supply
the nodes, but also measurements of the power consumption of the
devices remotely whenever it is necessary.

Debugging capabilities – The idea of a WSN testbed platform is
not just verify and validate that a sensor is gathering data within a
predefined threshold. In order to evaluate the robustness and
effectiveness of a WSN, it is necessary to include mechanisms for
system debugging, from the hardware layer up to the application
level, including the behavior of internal peripherals, interfaces
between HW components and software functionalities. Moreover,
the interaction among the nodes is also a key aspect to be
considered, which introduces the concept of network debugging.
Therefore, in this work three levels of system debugging are
proposed: hardware level, software-components level, and
network-application level.

Multi-experiment – Partial reprogramming strategies – since
testing, prototyping and assessing new WSN technologies,
algorithms and protocols is an iterative process where optimization
are performed based on the results of the debugging tasks, the
remote reprogramming needs to be performed in an efficient way
so that changes in the experiments shall not imply a long and
resource consuming dissemination process every time it is carried
out. Therefore, in this work an optimized version of a proposed
mechanism based on the concept of partial and remote

reprogramming is included, in which several tests units can be
downloaded and scheduled into the nodes, so that an experiment
repository can be reprogrammed and time slotted within the same
device.

Based on these considerations that also define the scope of this
work, a novel architecture for testing, debugging and assessing
WSN technologies is proposed, focusing on optimizing the
performance and efficiency of the Cookie platform with the
support of a set of HW-SW developments and components. A
general overview of the proposed platform is shown in figure 1 and
described in the following sub-sections.

Figure 1. General view of the proposed Architecture.

3.1. Backchannel interface and testbed communication
In the proposed development and testing framework, two main

high performance based communication layers are included to
satisfy the remote access requirements to the devices under tests.
On one hand, a combination of the standard-based Ethernet
connection with the concept of Power over Ethernet (PoE) is
included by means of designing an integrated Cookie-compliant
layer. The idea of using Ethernet is not only related to the
reliability of the communication and the bandwidth (apart from its
ease of integration in an indoor-based testbed scenario), but also to
include the PoE technique, which takes advantage of the physical
connection of the Ethernet standard to transfer power to end
devices by using pairs of wires that are not part of the data signals,
so that power supply and data can be obtained from the same cable,
then reducing the complexity of the interconnections.

The approach of Power Source Equipments (PSE) shall be also
taken into account. These are the devices in charge of acting as
both the routers of the Ethernet communication and power supply
providers through each available socket. Aiming to have as less
complexity in the interconnections as possible, the selected
configuration to the PSE has been the use of an Endspan device.
Apart from the power supply capabilities of these elements, the
switching actions on the device to be powered are done at this
level, so the PSE provides with the possibility of turning on/off the
nodes remotely.

Finally, the Powered Device (PD) is considered as the final
nodes that receive both data signals and powered signals from the
PSE through the same cable. As defined in the PoE standard, it is
possible to obtain up to 54V and up to 15.4W from the Ethernet
port which completely covers the power supply requirements of the
end devices. In case of the proposed architecture, the powered
devices are the Cookie Nodes, which are the final devices under
test. Within the implementation of a Cookie-compliant PoE device,
the conversion of the high input voltage levels of the Ethernet port
to the standard levels of the Cookie layers is done (3.3V/2.8V,
2.5V, 1.8V 1.5V and 1.2V, for components such as the FPGAs,
microcontrollers, among other internal elements included within

the system), as well as the inclusion of the measurement of the
power consumed by the platform, so that the energy behavior can
be analyzed in runtime. Moreover, the Ethernet stack is also
included so that the remote actions are transparently performed
over the backchannel by using a standard interface, such as SPI or
UART, as shown in fig. 2.

On the other hand, to tackle the limitations of the Ethernet in
terms of mobility of the sensor nodes as well as the scalability and
flexibility of the platform, apart from the performance evaluation
in outdoor environments, the inclusion of the IEEE 802.11 within
the testbed infrastructure is also proposed, which enhance one of
the key features to be covered in these scenarios: interoperability
and heterogeneity.

A high performance wireless protocol for performing the
backchannel debugging tasks also implies several advantages in
the support of final in-field outdoor applications. First, in those
scenarios where Wi-Fi connection is limited in certain areas,
cluster nodes can be defined as heterogeneous devices that
implement the low-rate based communication protocol for the
wireless sensor network, and the high performance connection to
interface the remote server. On the other hand, in both indoor-
outdoor-based testbed scenario, the physical topology in terms of
localization and placement can be easily modified, which provides
developers with the ability of testing mobility, routing
performance, coverage and planning algorithm issues in sensor
networks.

Similar to the Ethernet-based Cookie layer, a new
communication layer for high level wireless connectivity is then
proposed, which includes the integration of a Low-Power Wi-Fi.
Hence, the design of a heterogeneous WSN testbed architecture is
proposed in order to maximize the capabilities of the remote
experimentation schema, where four main communication
technologies converge: Ethernet, IEEE 802.11, IEEE 802.15.4 and
ZigBee, merging robustness and flexibility with modularity in a
unique support platform.

3.2. Hardware support platform – debugging blocks
Unlike works where the main way of debugging remotely the

sensor nodes is by performing printf-based messages from the
node’s microcontroller, the present work addresses the capability
of carrying out this actions by accessing remotely specific
hardware and software elements of the Cookie modular platform,
i.e., capturing specific signals of interest such as GPIOs of the
node core, sensor interfaces and their status, and communication
interfaces among the different layers. Moreover, the ability to
analyze specific software components by including a remote
debugger for the microcontroller of the platform helps developers
to cope with specific failures or application malfunctions that
cannot be detected by simple printf-based message usage. In this
way, bringing the possibility of carrying out runtime debugging
tasks by capturing the status of specific registers, memory sectors,
flag-masks parameters and peripheral configurations, developers

Figure 2. Ethernet Layer Architecture.

are able to modify the behavior of their experiments, more than
just gathering data related to the application running.

In fig. 3, the proposed debugging scheme is shown in detail,
where the FPGA is connected to the majority of digital signals and
interfaces involved in the Cookie platform. By combining the
hardware blocks implemented in the FPGA with the debugging
connection to the microcontroller and, therefore to its internal
peripherals, the testbed can have control of both hardware and
software elements.

On one hand, the debugging blocks can obtain information
related to the digital interfaces of the sensors, such as I2C, 1-wire,
PWM, as well as the status of the generic interfaces proposed in
[10]. On the other hand, the interfaces related to the connection
from the microcontroller to the communication modules can also
be gathered and filtered by the FPGA blocks in a transparent way,
i.e., without interfering in the behavior of those lines, so that
specific signal levels shall be analyzed in order to find low level
problems during information exchanging.

Since every Testing Action has its corresponding code number
(called Test Identifier, which includes the input information of the
testing process received from the testbed server side, as a reference
of the action to be performed), the debugging block is in charge of
generating the subsequent Action Frames in order to provide
developers with the result information according to the
response/behavior of the component/functionality under test. The
actions to be performed can be classified depending on the type of
debugging level, as follows:

GPIO/Signal Level
Sensor/Actuator Level
Interface/Communication Level
Component/Peripheral Level
Implementation Level
Application Level

Every test will automatically generate an Action Frame by the
debugging block in the corresponding encoded format, according
to the input information of the Test Identifier. The Action Frames
are then sent through the proposed backchannel interface.

Regarding the debugging capabilities of the software
functionalities related to the microcontroller, it has been necessary
to design and integrate a adaptable debugging component in order
to remotely perform actions in runtime. In this way, since most of
the available development tools support debugging capabilities by
using standard interfaces, the remote debugging of the
microcontroller is done by means of JTAG, UART or SPI, and the
corresponding conversion to the backchannel interface is then
carried out in the FPGA, which process is transparent from the user
point of view. Thus, by including a small code segment in the uC
for the debugging tasks, the capabilities of available IDEs that
support the corresponding core (in this case the well-known and
extended 8051-based architecture) can be used.
3.3. Memory-segmentation-based architecture

As previously explained, the concept of splitting the available
program memory into modular segments to remotely reprogram it
in a partial fashion is used, so that different and independent
testbed experiments can be downloaded and scheduled to be run at
different times. In this way, the novel segmentation-based
architecture proposed in [11] has been optimized for the testbed
architecture, particularly in the support segment, where the defined
software libraries for the framework support are included. The
dynamic organization of this area has been optimized to include
new software components for the management and control of novel
hardware developments. In this way, the area of interest is
calculated as follows:

AL
/ - i

n) (1)

AL is the reserved area for the software support platform, which
contains the libraries and components to be used. LSn is the size of
the slot n, which depends on the total sub-area of every library in
its current version. NS is the amount of libraries to be included in
this area, whereas the OSn is a generic offset which is assigned to
every slot in order to include replacements, modifications or
changes in the current version of the libraries. Applying the same
offset in every library slot, Os, the expression remains as follows
(note that every offset can also be calculated by assigning a weight
depending on the size of the current library):

AL = (Os * Ns) I (2)

Two versions are available, the first one aimed to be used in
final implementations where the size of the segment is optimized,
not assigning Os to any sub-area, so the first element of the right
side of the expression is null, resulting on a smaller size of the
support area. In this case, the target of the experiments is related to
the usage of the dynamic area for testing algorithms, applications,
etc. on top of the support area, which thus stays fixed. The second
version is intended to be applied in platform experiments where
modifications of the support libraries are carried out. In this
scenario, every available sub-area for library updates is calculated
as follows:

Asn — Lsn + Osn + Osn-1 + Osn+1 (3)

Asn is the maximum size per slot that can be updated. Every time
a slot is updated with a new version of a library, Lsn and Osn have
to be updated as well, so that every time a sub-area shall be
updated, the adjacent slots will not be corrupted. With this
expression the size of the support area is optimized to minimize the
insolated memory space, without being necessary to reprogram the
whole memory sector, and thus maximizing the capabilities of the
partial reprogramming mechanism.

On the other hand, from the point of view of the execution of
different experiments downloaded into the testbed platform, the
application scheduler has been improved by taking into account the
relative position of the trigger services for every user experiment in
correlation with the real position of the interruption vector defined
in the core architecture. Users can assign time slots for different
experiments and the management segment will automatically
launch the corresponding application according to the stored
information in the programmed scheduler.
3.4. Software support platform – software components

Based on the HW-SW integration platform proposed in [12], a
complete set of new software libraries for handling the
backchannel debugging tasks has been implemented, so that users
only have to configure few parameters in order to run a new
experiment into the testbed architecture. More than this, the design
and creation of functional blocks for allowing the runtime remote

Figure 3. HW-SW debugging schema.

reconfiguration of each node through the laboratory
communication were carried out and implemented. These modular
components are included in addition to the framework that
provides users with libraries for controlling every aspect of the
hardware platform, such as communication modules (ZigBee,
IEEE 802.15.4) sensor’s repository, internal peripherals, etc. as
well as the implementation of algorithms and protocols.

Since the main target of debugging WSN based applications is
not only the assessment of every single node but also the network
as a whole system, in this work the idea of integrating network
analysis for carrying out experimental actions is included, in order
to study the performance of the wireless network in terms of
connectivity issues, routing protocol robustness, node
synchronization, medium access efficiency and platform coverage.

IV. IMPLEMENTATION
In order to address the aforementioned requirements and the

proposed system architecture, both hardware and software
implementations have been carried out to support the testbed
architecture, as described in the following sub-sections.

4.1. Hardware infrastructure
Focused on the definition of the Ethernet-based backchannel

communication, two elements are to be considered in the
implementation schema. First, the Netgear GS110TP switch [13]
has been selected as the Endspan element, which supports the PoE
standard as well as 10/100 Mbps (Ethernet and fast Ethernet,
respectively). Secondly, the design of the Cookie-based Ethernet
Powered Device has been carried out. The design and
implementation of this concept has been focused on covering three
key aspects of the proposed architecture in a unique device. First of
all, a Cookie-compliant design has to be taken into account, which
aims to the flexibility, modularity and robustness of the
architecture. Second, the platform must be compliant with the PoE
standard as Powered Device and thus being able to convert the
input levels of the power supply coming from the Ethernet port in
order to provide energy to the modular layers that are part of the
node platform. Third, an adequate interface between the processing
layer of the Cookie platform and the data signals of the Ethernet
standard has to be established, so that the node is able to exchange
information to the server by using that interface (through standard
protocols such as TCP/IP).

The final implementation of the proposed Cookie-Ethernet-
based platform layer is shown in fig. 4 (left), called EtherCookie.
Two stages in the power supply system design have been followed.
On one hand, a PoE controller for adapting up to 54 V to 3.3 V has
been included in the implementation, the Silvertel Ag9403-2BR
from the Ag9400 family [14], in which nominal output voltages
can be found, such as 24V, 12V, 5V and 3.3V. For this particular
case, the Ag9403 provides 3.3V and 6.6 watts as maximum output
power that is enough for the requirements of the Cookie nodes. On
the other hand, linear regulators for supplying the different
required voltages have also been included in the proposed layer. It
has been also necessary to include a RJ-45 PoE-compliant, such as
the BelFuse SI-52008-F [15]. In terms of data exchange through
the backchannel, a SPI-Ethernet interface solution has been
adopted by selecting the WIZNet W5200 module [16]. This
module supports most of the standard protocols for Ethernet
communication, such as TCP, UDP, IPv4 among others, having
High Speed SPI.

Regarding the integration of a Wi-Fi-based node as part of the
testbed architecture, a new communication layer for high level
wireless connectivity is proposed, based on the RN-131C from
Roving Networks. This module addresses IEEE 802.11 b/g as the
implemented protocol with different authentication modes such as
WEP-64 and WPA2-PSK, typical output RF power = +18dBm,

Sn

Figure 4. Implementation of the backchannel architecture.

Power Source = 3.3 V, several power consumption modes, having
4 uA in sleep configuration, on-board chip Antenna,, U A R T
interface with A T command-based configuration, and several
functionalities such as Timers, GPIOs, 8 Mbit flash memory and
128 kB R A M [17]. The design of the layer follows the standards
and dimensions of the Cookie platform, as shown in fig. 4 (right)
where the hardware modularity is highlighted.

4.2. Hardware-Software Support Platform
Apart from the existing integration platform, new support

components are proposed in this framework to be included in the
processing elements, as follows.

CEI_Ethernet: for the configuration and maintenance of the
backchannel form the point of view of the EtherCookie
implementation. Functional blocks include W5200 configuration,
protocol stack configuration and management, which are included
in the FPGA hardware implementation.

CEI_WiFi: similar to CIE_Ethernet for the support of the testbed
backchannel infrastructure, including Access Point and Ad-hoc
network configurations, sleeps modes and TCP/UDP connectivity,
within the FPGA implementation.

CEI_Reconfig & CEI_Console: These packets include the
capabilities regarding remote reprogramming and system recovery
through the backchannel interface, in combination with remote
options for user segment edition and application code execution
based on the proposed optimization scheme.

CEI_Linker: This packet contains information regarding the
correlation between the library segments and the user dynamic
area, as well as initialization directives to support the optimized
segmented architecture.

CEI_Diagnosis: this packet implements the functional blocks
regarding deployment analysis and prototype assessment.

CEI_Framework: this packet represents the backbone of the
testbed architecture and the support of the platform, which is to be
used to create new experiments and application tests as well as
assure the effectiveness of the partial remote reprogramming.

V. EXPERIMENTS & TEST CASES

5.1. Scenario1: Backchannel capability-energy performance
In order to test and analyze the performance of the testbed

infrastructure, an indoor W S N testbed deployment has been carried
out at CEI–UPM, which includes the backchannel interface by
using EtherCookie and Wi-Fi-based nodes to remotely access the
platform capabilities, as shown in fig. 5.a). Moreover, the idea goes
beyond testing the remote interface, because the memory-
segmentation-based architecture has been validated and the energy
performance of the nodes was analyzed as well. Two processing
layers have been included in the experiments, the first one that
includes an ADuC841 microcontroller from Analog Devices [18]
and the second one with a C8051F930 from Silicon Labs [19]. In
this particular test case, the memory segmentation schema was
distributed as shown in fig. 5.b), where 40 K B were reserved to the
user dynamic area for experimental purposes, dividing this
memory space into 4 K B per slot so that up to ten different tests

can be downloaded into the reprogramming architecture (which is
fully configurable depending on the user requirements). Moreover,
from the position 0xB000 to 0xDFFF the support area was also
included, which contains the software libraries for providing users
which the Cookie HW-SW management capabilities, as well as the
recovery segment from 0xE000 for the remote reprogramming and
back-up features.

The behavior of the network is as follows: Nodes are configured
with the corresponding parameters regarding WSN deployment
and the testbed capabilities, and then the basic application starts
running (ZigBee-based communication for the wireless
connectivity of the nodes). Nodes send information of their sensor
measurements every 2 seconds and, after 5 consecutive data
transmissions, the nodes are configured to enter in sleep modes.
From the point of view of energy modeling and assessment, a
power consumption characterization has been carried out by using
the on-board circuit included in the Cookie platform for measuring
the consumption of the nodes, as shown in fig. 6, where transitions
among the different aforementioned stages are highlighted. The
first area corresponds to the module configuration (the Wi-Fi-
based node in the figure), which takes 1.4s and 2.24s during the
connection to an access point of the lab. The average consumption
of the ADuC841-based nodes is 68 mA, whereas in case of the
C8051F930-based nodes is 40mA. As seen in the figure, there is a
time transition between configurations that corresponds to the
restart and synchronization process of the Wi-Fi module, which is
a common value for the whole deployment. Moreover, current
picks regarding packet transmission process are highlighted, which
mainly correspond to the power consumption of the
communication module.

From the point of view of the remote and partial reprogramming
by using the proposed architecture, the tests consisted on sending a
whole reprogramming file which included the set of software
libraries and packets, and compared it with a partial
reprogramming which contained only the top level application

Figure 5.a) Testbed deployment at the research Center.

Figure 5.b) Memory segmentation schema for the test case.

Figure 6. Energy characterization of the deployed platform.

Figure 7. Whole and partial remote reprogramming comparison.

functionalities, considering that the libraries have been pre-
downloaded as an integral part of the system. In fig. 7, the remote
reprogramming process is compared in both whole and partial
reprogramming, obtaining a very important optimization in terms
of energy and time consumption during the reconfiguration tasks.
In table 1, a comparison between the whole and partial
reprogramming regarding file size and timing is done for both
processing layers.

Table 1. performance of the remote reprogramming technique.

Hcmrte R.'ntii¡;t,immiii):/

Partial Reprogjr*mmJri(

Whole Re prog ramming

ADuCBfli C4Q51F330

- pr;r8 -
«4 mi 1,H 952 mi

19.20 s 32rB 21.70 i

Programming
File? (kfi)

1,63

SG.S

her baud rates or the S

is the ratio of reprog

(4)

According to the experimental results of the remote
reprogramming tests, the time expended to send a single byte
remotely is calculated based on the equation 4, taking into account
that the main bottleneck in this process is the serial interface
between the backchannel communication module and the
processing element. For instance, a performed test with the Wi-Fi
module for reprogramming the microcontroller through the UART
interface configured in 19200 bauds, obtains a value of 570us/byte
during the remote reprogramming process, which can be optimized
by using higher baud rates or the SPI interface.

IE
Sp

Where Pr is the ratio of reprogramming time spent per byte, Tp
is the total amount of time for the partial reprogramming, and Sp is
the size of the reprogramming file in bytes.

5.2. Scenario 2: Planning Tool use case-Network analysis
In this experimental test, the main idea is to evaluate and

compare simulated deployments of a planning tool with a real
indoor environment such as the laboratory area, based on the
proposed testbed platform. Three main capabilities of the testbed
infrastructure are validated. First, by using the wireless based
backchannel, the mobility over the area of interest is proved to be
much flexible without reducing the performance of the testbed (in
case of a planning tool it is important to carry out an iterative
process by changing the position of the nodes in order to compare
those deployments with the generated simulations). Second, the
network diagnosis techniques have been applied in this particular
case in order to obtain real information of the behavior of the
nodes in terms of connectivity, quality of the coverage, etc. Third,
the remote and partial reprogramming capabilities have also used
in order to change application/network set-ups, such as module
configurations, power mode strategies, nodes synchronization,

Figure 8. performance of the second testbed scenario.

among other parameters. One of the deployments, composed of 18
nodes, is shown in fig. 8, along with the real routing maps
generated by applying the proposed network diagnosis, as well as
the path assessment – PLR computation for every single node
communication (from node source to the coordinator node), as
shown in fig. 8.

VI. CONCLUSIONS AND FUTURE WORK

A complete testbed architecture for debugging, testing,
managing and analyzing Cookie-based wireless sensor network
prototypes and new developments has been designed and
implemented, not only aiming to have a robust and reliable
laboratory support tool for experiments, but also to increase the
efficiency, connectivity and remote control of the wireless nodes in
order to provide users with an effective way to interact with the
platform anywhere at any time, hence joining key points to the
future applications in this research field. As future approaches for
continuing potentiating the usability of the proposed testbed
architecture, one of the key features to be implemented is a service
oriented GUI , so that users can access and control the testbed in a
more intuitive way through web-based internet connectivity.
Moreover, as the H W - S W platform has been created for being
scalable, the deployment of more amounts of nodes along the
facilities of the research lab is possible and feasible, so the next
step is to increase the number of nodes connected to the testbed
infrastructure.

REFERENCES

[I] S. Agrawal, M.L. Das, "Internet of Things — A paradigm shift of future
Internet applications", Nirma University International Conference on
Engineering, NUiCONE 2011. pp. 1-7.

[2] S . Krco, M . Nati, D . Pfisterer, N . Mitton, T. Razafindralambo "A survey on
facilities for experimental internet of things research" in IEEE
Communication Magazine, Vol. 49, pp. 58-67. November 2011.

[3] J. Portilla, A . de Castro, E . de la Torre, T. Riesgo, “A Modular Architecture
for Nodes in Wireless Sensor Networks” in JUCS, vol. 12, nº 3, pp. 328-339,
March 2006.

[4] G . Werner-Allen, P . Swieskowski, M . Welsh, “Motelab: a wireless sensor
network testbed” in Information Processing in Sensor Networks, IPSN 2005,
pp. 483 – 488.

[5] E. Ertin, A . Arora, R. Ramnath, V . Naik, S . Bapat, V . Kulathumani, M .
Sridharan, H . Zhang, H. Cao, M . Nesterenko, “Kansei: a testbed for sensing at
scale” in Information processing in sensor networks, IPSN 2006, pp. 399–406.

[6] R. Crepaldi, S . Friso, A . Harris, M . Mastrogiovanni, C . Petrioli, M . Rossi, A .
Zanella, and M. Zorzi, “The design, deployment, and analysis of signetlab: A
sensor network testbed and interactive management tool” in TridentCom
2007. pp. 1 –10.

[7] J. Slipp, C . Ma, N . Polu, J. Nicholson, M. Murillo, S . Hussain, “Winter:
Architecture and applications of a wireless industrial sensor network testbed
for radio-harsh environments” in Communication Networks and Services
Research Conference, C N S R 2008. pp. 422 –431.

[8] M. Bal, H. Xue, W. Shen, and H. Ghenniwa, “A testbed for localization and
tracking in wireless sensor networks” in Systems, Man and Cybernetics, SMC
2009. pp. 3581 –3586.

[9] T . Dimitriou, J. Kolokouris, N . Zarokostas, “Sensenet: a wireless sensor
network testbed” in A C M MSWiM 2007, pp. 143–150.

[10] J. Portilla, T . Riesgo, A . Abril, A . de Castro, “Rapid prototyping for multi-
application sensor networking“, 12 November 2007, SPIE Newsroom. DOI:
10.1117/2.1200711.0851.

[II] G . Mujica, V . Rosello, J. Portilla, and T Riesgo, "On-the-fly dynamic
reprogramming mechanism for increasing the energy efficiency and
supporting multi-experimental capabilities in WSNs," in Proc. IECON’13,
pp.5455-5460, Nov. 2013.

[12] G. Mujica, V . Rosello, J. Portilla, T . Riesgo, "Hardware-software integration
platform for a WSN testbed based on cookies nodes", in 38th Conference on
IEEE Industrial Electronics Society (IECON’12). pp. 6013-6018.

[13] Netgear PoE, http://www.netgear.com/business/products/switches/
[14] Silvertel PoE products,http://www.silvertel.com/poe_products.htm
[15] Bel Fuse components, http://www.belfuse.com/
[16] WIZNet korea, TCP/IP Chip, http://www.wiznet.co.kr/
[17] Ultra-low power Wi-Fi RN131C module,

http://www.rovingnetworks.com/products/RN131C.
[18] Analog Devices, http://www.analog.com/en/index.html.
[19] Silicon Laboratories, www.silabs.com

http://www.netgear.com/business/products/switches/
http://www.silvertel.com/poe_products.htm
http://www.belfuse.com/
http://www.wiznet.co.kr/
http://www.rovingnetworks.com/products/RN131C
http://www.analog.com/en/index.html
http://www.silabs.com

