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Abstract—The Internet of Things has emerged as one of the key 
aspects for the future of the Wireless Sensor Networks and their 
impact on new applications in real environments. This concept poses 
new challenges in the implementation, testing and debugging of 
efficient, robust and reliable technologies under this paradigm, 
specially in a pre-deployment stage where HW-SW platform 
prototypes are to be optimized prior to their inclusion in actual 
deployments. In this work, the design and implementation of a 
complete testbed infrastructure as a support tool for improving the 
effectiveness and the applicability of sensor nodes to real systems is 
presented, focused on the modular architecture of the Cookie 
platform and aiming to help developers to integrate and improve the 
whole WSN operation to final real-world scenarios. 
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I. INTRODUCTION 

During the last years the paradigm of the Wireless Sensor 
Networks (WSN) and the Internet of Things (IoT) has been 
strongly involved in most of the new technologies and research 
lines for different application fields, such as smart cities, industrial 
environments, security issues, energy harvesting and home 
automation, aiming to interact with the environment remotely 
anywhere at any time. One of the key topics in which the concept 
of IoT is having more and more impact is in the WSN applications 
[1], where hundreds of small devices have to be controlled, 
managed, and monitored in an efficient and reliable way, so that 
feedbacks from the in-field deployment are to be obtained. 
However, the challenges that involve the WSN technology, such as 
power consumption and long-term autonomy, low-data-range 
based wireless protocols, limited bandwidth, limited processing 
resource and memory, pose much more issues to be covered in 
order to effectively expand its applicability to real scenarios. 

In this way, the creation of novel testbed infrastructures [2] for 
experimenting and optimizing WSN technologies must be enclosed 
by flexible architectures and the ease-of-use on the management, 
monitoring and reconfiguration of sensor nodes remotely from any 
place, so that new development approaches and prototypes can be 
tested. Most of the current testbed platforms are based on 
commercial hardware which are widely used but start being 
obsoletes and much less flexible for new technologies that come 
out with this new world of the WSN and the IoT. Besides, the old 
node platforms that are used in most of the available testbeds are 
limited in case of testing new hardware technologies, due to the 
lack of well-defined hardware debugging capabilities. These issues 
motivate the creation of a completely new testbed architecture in 
order to run experiments related to this novel approach within the 
WSN technology, by continuing developing the Cookies Nodes 
technology [3] which offers a HW-SW integration platform that 
accomplishes key features to the future of the WSN within the IoT: 
Modularity, flexibility, scalability, heterogeneity and repeatability. 

The work proposed in this paper is then focused on having a 
complete feedback to a real Cookie-based WSN by combining a 
high performance backchannel infrastructure (Based on Ethernet 
and Wi-Fi connectivity) with the improvement of a memory-
segmentation-based architecture to allow users to partially and 
remotely reprogram their experiments in a dynamic way, by 

providing a mechanism for modifying specific components of the 
system. Moreover, new software support components for 
increasing the robustness of the HW-SW platform are also 
proposed, in order to help users to debug and experiment in 
runtime with a real deployment scenario in an easy but reliable 
way, to optimize their prototypes from the laboratory stage before 
including them in the final application, so that the efficiency and 
effectiveness of the nodes can be assured. 

II. RELATED WORK 

Several testbed platforms have been proposed during the last 
years, focusing on testing prototypes and applications before final 
implementations. One of the most well-known testbeds is Motelab 
[4] that is an open access platform for testing experiments based on 
MicaZ motes. Nodes can be accessed by a PHP web server. In 
Kansei [5] the concept of simulation over a testbed support 
platform is proposed, by implementing 210 sensor nodes, which 
are connected to Linux-based stargates that control the data 
collections. SignetLab [6] implements 48 EyesIFXv2 motes that 
are connected to tiered USB hubs, which are also connected to a 
single PC in order to control, manage and reprogram the deployed 
nodes by using a Java based application. In terms of testbeds 
focused on final application scenarios, different approaches have 
been presented in recent years, such as WINTeR [7], in which a 
large scale industrial deployment is proposed in order to evaluate 
and support industrial applications, based on programmable motes 
controlled by a web interface. This testbed is based on two 
backchannels, the first one for controlling the data exchange to the 
nodes (Ethernet connection) and the second one for powering the 
nodes (USB connection). In [8] an in-field tracking and 
localization testbed was developed in a manufacturing lab scenario 
in order to model the effects that can be found in real deployments 
with similar conditions, by using TelosB connected to a central 
server which runs a java-based software application to control the 
experiments. There are also approaches that propose the 
management of the testbeds by using the main wireless link, 
without then implementing backchannel infrastructures (which is 
bandwidth-consuming and system intrusive when debugging), such 
as the work presented in [9], where a software component to be 
installed in the nodes is proposed combined with a web interface to 
control and manage the deployment using the wireless link. 

Most of the current testbed platforms aim to test software 
prototypes by using the well-known TelosB or MicaZ nodes, 
which are becoming obsolete due to its low flexibility and their 
limited adaptation to hardware expansion and testing. Apart from 
it, the capabilities of dynamic experimentation by performing 
remote and partial reprogramming of the WSN testbed platform is 
not covered in most of the available systems, or is only done by 
means of TinyOS component replacement, which is totally 
oriented to developments under this operating system. 

III. SYSTEM ARCHITECTURE - CONSIDERATIONS, REQUIREMENTS 
AND CHALLENGES 

Based on the proposed concept of a WSN Testbed platform 
which aims to provide developers and researchers with a complete 
set of HW-SW support tools beyond simulation capabilities, this 



testbed infrastructure is focused on allowing users to test their 
prototypes, new algorithms and built-protocols in a real 
environment, based on a completed pre-deployment scenario 
where the platform can be programmed and configured with 
parameters related to the experiment to be performed in runtime. 
The results of the tests are based on real measurements and the real 
behavior of the system, not as an interpolation of modeled 
behaviors, which is the case of WSN simulations, where 
assumptions are done due to computational and modeling 
limitations. Users can then access to the parameters of every node, 
gather actual data of the hardware platform, assess the network 
performance and, in case of needed, modify configurations in order 
to change measurement parameters or verify functional blocks. By 
using the proposed backchannel-based architecture, developers are 
provided with a way to interact with the sensor nodes and the 
whole network in a non-intrusive way, in contraposition with the 
limitations of the main-network-based/backchannel-free testbeds. 

In order to face such a challenging goal, four main aspects and 
considerations have to be covered for the success of the testbed 
architecture that is being proposed, as split below. 

Remote access & reprogramming – One of the key aspects 
related to the testbed capabilities is the ability to modify not only 
parameters regarding configurations of the nodes, but also entire 
algorithms, functional blocks or even the whole application in an 
remote, efficient and reliable fashion. In this context, the use of an 
independent channel to replace or download programming files 
into the core of the nodes without using the main wireless link 
takes place. The backchannel shall allow modifying the memory 
flash of the devices where the experiments are running, with no 
interference with the wireless network itself. 

Energy Assessment – one of the research targets in WSNs is the 
energy efficiency, focusing on extending the lifetime and 
autonomy of the systems in their final operation. In this way, the 
testbed infrastructure has to provide the ability to analyze the 
performance of the nodes in terms of energy consumption in 
runtime, in order to define the energetic behavior of specific 
prototypes as well as apply strategies to turn on/off nodes so that 
the self-reconfiguration of the network in terms of topology 
changes can be monitored remotely (which is also intended to 
evaluate implementations such as routing protocols and MAC 
algorithms). In order to accomplish this, the testbed architecture 
has to be capable of providing not only strategies to power supply 
the nodes, but also measurements of the power consumption of the 
devices remotely whenever it is necessary. 

Debugging capabilities – The idea of a WSN testbed platform is 
not just verify and validate that a sensor is gathering data within a 
predefined threshold. In order to evaluate the robustness and 
effectiveness of a WSN, it is necessary to include mechanisms for 
system debugging, from the hardware layer up to the application 
level, including the behavior of internal peripherals, interfaces 
between HW components and software functionalities. Moreover, 
the interaction among the nodes is also a key aspect to be 
considered, which introduces the concept of network debugging. 
Therefore, in this work three levels of system debugging are 
proposed: hardware level, software-components level, and 
network-application level. 

Multi-experiment – Partial reprogramming strategies – since 
testing, prototyping and assessing new WSN technologies, 
algorithms and protocols is an iterative process where optimization 
are performed based on the results of the debugging tasks, the 
remote reprogramming needs to be performed in an efficient way 
so that changes in the experiments shall not imply a long and 
resource consuming dissemination process every time it is carried 
out. Therefore, in this work an optimized version of a proposed 
mechanism based on the concept of partial and remote 

reprogramming is included, in which several tests units can be 
downloaded and scheduled into the nodes, so that an experiment 
repository can be reprogrammed and time slotted within the same 
device. 

Based on these considerations that also define the scope of this 
work, a novel architecture for testing, debugging and assessing 
WSN technologies is proposed, focusing on optimizing the 
performance and efficiency of the Cookie platform with the 
support of a set of HW-SW developments and components. A 
general overview of the proposed platform is shown in figure 1 and 
described in the following sub-sections. 

Figure 1. General view of the proposed Architecture. 

3.1. Backchannel interface and testbed communication 
In the proposed development and testing framework, two main 

high performance based communication layers are included to 
satisfy the remote access requirements to the devices under tests. 
On one hand, a combination of the standard-based Ethernet 
connection with the concept of Power over Ethernet (PoE) is 
included by means of designing an integrated Cookie-compliant 
layer. The idea of using Ethernet is not only related to the 
reliability of the communication and the bandwidth (apart from its 
ease of integration in an indoor-based testbed scenario), but also to 
include the PoE technique, which takes advantage of the physical 
connection of the Ethernet standard to transfer power to end 
devices by using pairs of wires that are not part of the data signals, 
so that power supply and data can be obtained from the same cable, 
then reducing the complexity of the interconnections. 

The approach of Power Source Equipments (PSE) shall be also 
taken into account. These are the devices in charge of acting as 
both the routers of the Ethernet communication and power supply 
providers through each available socket. Aiming to have as less 
complexity in the interconnections as possible, the selected 
configuration to the PSE has been the use of an Endspan device. 
Apart from the power supply capabilities of these elements, the 
switching actions on the device to be powered are done at this 
level, so the PSE provides with the possibility of turning on/off the 
nodes remotely. 

Finally, the Powered Device (PD) is considered as the final 
nodes that receive both data signals and powered signals from the 
PSE through the same cable. As defined in the PoE standard, it is 
possible to obtain up to 54V and up to 15.4W from the Ethernet 
port which completely covers the power supply requirements of the 
end devices. In case of the proposed architecture, the powered 
devices are the Cookie Nodes, which are the final devices under 
test. Within the implementation of a Cookie-compliant PoE device, 
the conversion of the high input voltage levels of the Ethernet port 
to the standard levels of the Cookie layers is done (3.3V/2.8V, 
2.5V, 1.8V 1.5V and 1.2V, for components such as the FPGAs, 
microcontrollers, among other internal elements included within 



the system), as well as the inclusion of the measurement of the 
power consumed by the platform, so that the energy behavior can 
be analyzed in runtime. Moreover, the Ethernet stack is also 
included so that the remote actions are transparently performed 
over the backchannel by using a standard interface, such as SPI or 
UART, as shown in fig. 2. 

On the other hand, to tackle the limitations of the Ethernet in 
terms of mobility of the sensor nodes as well as the scalability and 
flexibility of the platform, apart from the performance evaluation 
in outdoor environments, the inclusion of the IEEE 802.11 within 
the testbed infrastructure is also proposed, which enhance one of 
the key features to be covered in these scenarios: interoperability 
and heterogeneity. 

A high performance wireless protocol for performing the 
backchannel debugging tasks also implies several advantages in 
the support of final in-field outdoor applications. First, in those 
scenarios where Wi-Fi connection is limited in certain areas, 
cluster nodes can be defined as heterogeneous devices that 
implement the low-rate based communication protocol for the 
wireless sensor network, and the high performance connection to 
interface the remote server. On the other hand, in both indoor-
outdoor-based testbed scenario, the physical topology in terms of 
localization and placement can be easily modified, which provides 
developers with the ability of testing mobility, routing 
performance, coverage and planning algorithm issues in sensor 
networks. 

Similar to the Ethernet-based Cookie layer, a new 
communication layer for high level wireless connectivity is then 
proposed, which includes the integration of a Low-Power Wi-Fi. 
Hence, the design of a heterogeneous WSN testbed architecture is 
proposed in order to maximize the capabilities of the remote 
experimentation schema, where four main communication 
technologies converge: Ethernet, IEEE 802.11, IEEE 802.15.4 and 
ZigBee, merging robustness and flexibility with modularity in a 
unique support platform. 

3.2. Hardware support platform – debugging blocks 
Unlike works where the main way of debugging remotely the 

sensor nodes is by performing printf-based messages from the 
node’s microcontroller, the present work addresses the capability 
of carrying out this actions by accessing remotely specific 
hardware and software elements of the Cookie modular platform, 
i.e., capturing specific signals of interest such as GPIOs of the 
node core, sensor interfaces and their status, and communication 
interfaces among the different layers. Moreover, the ability to 
analyze specific software components by including a remote 
debugger for the microcontroller of the platform helps developers 
to cope with specific failures or application malfunctions that 
cannot be detected by simple printf-based message usage. In this 
way, bringing the possibility of carrying out runtime debugging 
tasks by capturing the status of specific registers, memory sectors, 
flag-masks parameters and peripheral configurations, developers 

Figure 2. Ethernet Layer Architecture. 

are able to modify the behavior of their experiments, more than 
just gathering data related to the application running. 

In fig. 3, the proposed debugging scheme is shown in detail, 
where the FPGA is connected to the majority of digital signals and 
interfaces involved in the Cookie platform. By combining the 
hardware blocks implemented in the FPGA with the debugging 
connection to the microcontroller and, therefore to its internal 
peripherals, the testbed can have control of both hardware and 
software elements. 

On one hand, the debugging blocks can obtain information 
related to the digital interfaces of the sensors, such as I2C, 1-wire, 
PWM, as well as the status of the generic interfaces proposed in 
[10]. On the other hand, the interfaces related to the connection 
from the microcontroller to the communication modules can also 
be gathered and filtered by the FPGA blocks in a transparent way, 
i.e., without interfering in the behavior of those lines, so that 
specific signal levels shall be analyzed in order to find low level 
problems during information exchanging. 

Since every Testing Action has its corresponding code number 
(called Test Identifier, which includes the input information of the 
testing process received from the testbed server side, as a reference 
of the action to be performed), the debugging block is in charge of 
generating the subsequent Action Frames in order to provide 
developers with the result information according to the 
response/behavior of the component/functionality under test. The 
actions to be performed can be classified depending on the type of 
debugging level, as follows: 

GPIO/Signal Level 
Sensor/Actuator Level 
Interface/Communication Level 
Component/Peripheral Level 
Implementation Level 
Application Level 

Every test will automatically generate an Action Frame by the 
debugging block in the corresponding encoded format, according 
to the input information of the Test Identifier. The Action Frames 
are then sent through the proposed backchannel interface. 

Regarding the debugging capabilities of the software 
functionalities related to the microcontroller, it has been necessary 
to design and integrate a adaptable debugging component in order 
to remotely perform actions in runtime. In this way, since most of 
the available development tools support debugging capabilities by 
using standard interfaces, the remote debugging of the 
microcontroller is done by means of JTAG, UART or SPI, and the 
corresponding conversion to the backchannel interface is then 
carried out in the FPGA, which process is transparent from the user 
point of view. Thus, by including a small code segment in the uC 
for the debugging tasks, the capabilities of available IDEs that 
support the corresponding core (in this case the well-known and 
extended 8051-based architecture) can be used. 
3.3. Memory-segmentation-based architecture 

As previously explained, the concept of splitting the available 
program memory into modular segments to remotely reprogram it 
in a partial fashion is used, so that different and independent 
testbed experiments can be downloaded and scheduled to be run at 
different times. In this way, the novel segmentation-based 
architecture proposed in [11] has been optimized for the testbed 
architecture, particularly in the support segment, where the defined 
software libraries for the framework support are included. The 
dynamic organization of this area has been optimized to include 
new software components for the management and control of novel 
hardware developments. In this way, the area of interest is 
calculated as follows: 
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AL is the reserved area for the software support platform, which 
contains the libraries and components to be used. LSn is the size of 
the slot n, which depends on the total sub-area of every library in 
its current version. NS is the amount of libraries to be included in 
this area, whereas the OSn is a generic offset which is assigned to 
every slot in order to include replacements, modifications or 
changes in the current version of the libraries. Applying the same 
offset in every library slot, Os, the expression remains as follows 
(note that every offset can also be calculated by assigning a weight 
depending on the size of the current library): 

AL = (Os * Ns) I (2) 

Two versions are available, the first one aimed to be used in 
final implementations where the size of the segment is optimized, 
not assigning Os to any sub-area, so the first element of the right 
side of the expression is null, resulting on a smaller size of the 
support area. In this case, the target of the experiments is related to 
the usage of the dynamic area for testing algorithms, applications, 
etc. on top of the support area, which thus stays fixed. The second 
version is intended to be applied in platform experiments where 
modifications of the support libraries are carried out. In this 
scenario, every available sub-area for library updates is calculated 
as follows: 

Asn — Lsn + Osn + Osn-1 + Osn+1 (3) 

Asn is the maximum size per slot that can be updated. Every time 
a slot is updated with a new version of a library, Lsn and Osn have 
to be updated as well, so that every time a sub-area shall be 
updated, the adjacent slots will not be corrupted. With this 
expression the size of the support area is optimized to minimize the 
insolated memory space, without being necessary to reprogram the 
whole memory sector, and thus maximizing the capabilities of the 
partial reprogramming mechanism. 

On the other hand, from the point of view of the execution of 
different experiments downloaded into the testbed platform, the 
application scheduler has been improved by taking into account the 
relative position of the trigger services for every user experiment in 
correlation with the real position of the interruption vector defined 
in the core architecture. Users can assign time slots for different 
experiments and the management segment will automatically 
launch the corresponding application according to the stored 
information in the programmed scheduler. 
3.4. Software support platform – software components 

Based on the HW-SW integration platform proposed in [12], a 
complete set of new software libraries for handling the 
backchannel debugging tasks has been implemented, so that users 
only have to configure few parameters in order to run a new 
experiment into the testbed architecture. More than this, the design 
and creation of functional blocks for allowing the runtime remote 

Figure 3. HW-SW debugging schema. 

reconfiguration of each node through the laboratory 
communication were carried out and implemented. These modular 
components are included in addition to the framework that 
provides users with libraries for controlling every aspect of the 
hardware platform, such as communication modules (ZigBee, 
IEEE 802.15.4) sensor’s repository, internal peripherals, etc. as 
well as the implementation of algorithms and protocols. 

Since the main target of debugging WSN based applications is 
not only the assessment of every single node but also the network 
as a whole system, in this work the idea of integrating network 
analysis for carrying out experimental actions is included, in order 
to study the performance of the wireless network in terms of 
connectivity issues, routing protocol robustness, node 
synchronization, medium access efficiency and platform coverage. 

IV. IMPLEMENTATION 
In order to address the aforementioned requirements and the 

proposed system architecture, both hardware and software 
implementations have been carried out to support the testbed 
architecture, as described in the following sub-sections. 

4.1. Hardware infrastructure 
Focused on the definition of the Ethernet-based backchannel 

communication, two elements are to be considered in the 
implementation schema. First, the Netgear GS110TP switch [13] 
has been selected as the Endspan element, which supports the PoE 
standard as well as 10/100 Mbps (Ethernet and fast Ethernet, 
respectively). Secondly, the design of the Cookie-based Ethernet 
Powered Device has been carried out. The design and 
implementation of this concept has been focused on covering three 
key aspects of the proposed architecture in a unique device. First of 
all, a Cookie-compliant design has to be taken into account, which 
aims to the flexibility, modularity and robustness of the 
architecture. Second, the platform must be compliant with the PoE 
standard as Powered Device and thus being able to convert the 
input levels of the power supply coming from the Ethernet port in 
order to provide energy to the modular layers that are part of the 
node platform. Third, an adequate interface between the processing 
layer of the Cookie platform and the data signals of the Ethernet 
standard has to be established, so that the node is able to exchange 
information to the server by using that interface (through standard 
protocols such as TCP/IP). 

The final implementation of the proposed Cookie-Ethernet-
based platform layer is shown in fig. 4 (left), called EtherCookie. 
Two stages in the power supply system design have been followed. 
On one hand, a PoE controller for adapting up to 54 V to 3.3 V has 
been included in the implementation, the Silvertel Ag9403-2BR 
from the Ag9400 family [14], in which nominal output voltages 
can be found, such as 24V, 12V, 5V and 3.3V. For this particular 
case, the Ag9403 provides 3.3V and 6.6 watts as maximum output 
power that is enough for the requirements of the Cookie nodes. On 
the other hand, linear regulators for supplying the different 
required voltages have also been included in the proposed layer. It 
has been also necessary to include a RJ-45 PoE-compliant, such as 
the BelFuse SI-52008-F [15]. In terms of data exchange through 
the backchannel, a SPI-Ethernet interface solution has been 
adopted by selecting the WIZNet W5200 module [16]. This 
module supports most of the standard protocols for Ethernet 
communication, such as TCP, UDP, IPv4 among others, having 
High Speed SPI. 

Regarding the integration of a Wi-Fi-based node as part of the 
testbed architecture, a new communication layer for high level 
wireless connectivity is proposed, based on the RN-131C from 
Roving Networks. This module addresses IEEE 802.11 b/g as the 
implemented protocol with different authentication modes such as 
WEP-64 and WPA2-PSK, typical output RF power = +18dBm, 

Sn 



Figure 4. Implementation of the backchannel architecture. 

Power Source = 3.3 V, several power consumption modes, having 
4 uA in sleep configuration, on-board chip Antenna,, U A R T 
interface with A T command-based configuration, and several 
functionalities such as Timers, GPIOs, 8 Mbit flash memory and 
128 kB R A M [17]. The design of the layer follows the standards 
and dimensions of the Cookie platform, as shown in fig. 4 (right) 
where the hardware modularity is highlighted. 

4.2. Hardware-Software Support Platform 
Apart from the existing integration platform, new support 

components are proposed in this framework to be included in the 
processing elements, as follows. 

CEI_Ethernet: for the configuration and maintenance of the 
backchannel form the point of view of the EtherCookie 
implementation. Functional blocks include W5200 configuration, 
protocol stack configuration and management, which are included 
in the FPGA hardware implementation. 

CEI_WiFi: similar to CIE_Ethernet for the support of the testbed 
backchannel infrastructure, including Access Point and Ad-hoc 
network configurations, sleeps modes and TCP/UDP connectivity, 
within the FPGA implementation. 

CEI_Reconfig & CEI_Console: These packets include the 
capabilities regarding remote reprogramming and system recovery 
through the backchannel interface, in combination with remote 
options for user segment edition and application code execution 
based on the proposed optimization scheme. 

CEI_Linker: This packet contains information regarding the 
correlation between the library segments and the user dynamic 
area, as well as initialization directives to support the optimized 
segmented architecture. 

CEI_Diagnosis: this packet implements the functional blocks 
regarding deployment analysis and prototype assessment. 

CEI_Framework: this packet represents the backbone of the 
testbed architecture and the support of the platform, which is to be 
used to create new experiments and application tests as well as 
assure the effectiveness of the partial remote reprogramming. 

V. EXPERIMENTS & TEST CASES 

5.1. Scenario1: Backchannel capability-energy performance 
In order to test and analyze the performance of the testbed 

infrastructure, an indoor W S N testbed deployment has been carried 
out at CEI–UPM, which includes the backchannel interface by 
using EtherCookie and Wi-Fi-based nodes to remotely access the 
platform capabilities, as shown in fig. 5.a). Moreover, the idea goes 
beyond testing the remote interface, because the memory-
segmentation-based architecture has been validated and the energy 
performance of the nodes was analyzed as well. Two processing 
layers have been included in the experiments, the first one that 
includes an ADuC841 microcontroller from Analog Devices [18] 
and the second one with a C8051F930 from Silicon Labs [19]. In 
this particular test case, the memory segmentation schema was 
distributed as shown in fig. 5.b), where 40 K B were reserved to the 
user dynamic area for experimental purposes, dividing this 
memory space into 4 K B per slot so that up to ten different tests 

can be downloaded into the reprogramming architecture (which is 
fully configurable depending on the user requirements). Moreover, 
from the position 0xB000 to 0xDFFF the support area was also 
included, which contains the software libraries for providing users 
which the Cookie HW-SW management capabilities, as well as the 
recovery segment from 0xE000 for the remote reprogramming and 
back-up features. 

The behavior of the network is as follows: Nodes are configured 
with the corresponding parameters regarding WSN deployment 
and the testbed capabilities, and then the basic application starts 
running (ZigBee-based communication for the wireless 
connectivity of the nodes). Nodes send information of their sensor 
measurements every 2 seconds and, after 5 consecutive data 
transmissions, the nodes are configured to enter in sleep modes. 
From the point of view of energy modeling and assessment, a 
power consumption characterization has been carried out by using 
the on-board circuit included in the Cookie platform for measuring 
the consumption of the nodes, as shown in fig. 6, where transitions 
among the different aforementioned stages are highlighted. The 
first area corresponds to the module configuration (the Wi-Fi-
based node in the figure), which takes 1.4s and 2.24s during the 
connection to an access point of the lab. The average consumption 
of the ADuC841-based nodes is 68 mA, whereas in case of the 
C8051F930-based nodes is 40mA. As seen in the figure, there is a 
time transition between configurations that corresponds to the 
restart and synchronization process of the Wi-Fi module, which is 
a common value for the whole deployment. Moreover, current 
picks regarding packet transmission process are highlighted, which 
mainly correspond to the power consumption of the 
communication module. 

From the point of view of the remote and partial reprogramming 
by using the proposed architecture, the tests consisted on sending a 
whole reprogramming file which included the set of software 
libraries and packets, and compared it with a partial 
reprogramming which contained only the top level application 

Figure 5.a) Testbed deployment at the research Center. 

Figure 5.b) Memory segmentation schema for the test case. 

Figure 6. Energy characterization of the deployed platform. 



Figure 7. Whole and partial remote reprogramming comparison. 

functionalities, considering that the libraries have been pre-
downloaded as an integral part of the system. In fig. 7, the remote 
reprogramming process is compared in both whole and partial 
reprogramming, obtaining a very important optimization in terms 
of energy and time consumption during the reconfiguration tasks. 
In table 1, a comparison between the whole and partial 
reprogramming regarding file size and timing is done for both 
processing layers. 

Table 1. performance of the remote reprogramming technique. 
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According to the experimental results of the remote 
reprogramming tests, the time expended to send a single byte 
remotely is calculated based on the equation 4, taking into account 
that the main bottleneck in this process is the serial interface 
between the backchannel communication module and the 
processing element. For instance, a performed test with the Wi-Fi 
module for reprogramming the microcontroller through the UART 
interface configured in 19200 bauds, obtains a value of 570us/byte 
during the remote reprogramming process, which can be optimized 
by using higher baud rates or the SPI interface. 

IE 
Sp 

Where Pr is the ratio of reprogramming time spent per byte, Tp 
is the total amount of time for the partial reprogramming, and Sp is 
the size of the reprogramming file in bytes. 

5.2. Scenario 2: Planning Tool use case-Network analysis 
In this experimental test, the main idea is to evaluate and 

compare simulated deployments of a planning tool with a real 
indoor environment such as the laboratory area, based on the 
proposed testbed platform. Three main capabilities of the testbed 
infrastructure are validated. First, by using the wireless based 
backchannel, the mobility over the area of interest is proved to be 
much flexible without reducing the performance of the testbed (in 
case of a planning tool it is important to carry out an iterative 
process by changing the position of the nodes in order to compare 
those deployments with the generated simulations). Second, the 
network diagnosis techniques have been applied in this particular 
case in order to obtain real information of the behavior of the 
nodes in terms of connectivity, quality of the coverage, etc. Third, 
the remote and partial reprogramming capabilities have also used 
in order to change application/network set-ups, such as module 
configurations, power mode strategies, nodes synchronization, 

Figure 8. performance of the second testbed scenario. 

among other parameters. One of the deployments, composed of 18 
nodes, is shown in fig. 8, along with the real routing maps 
generated by applying the proposed network diagnosis, as well as 
the path assessment – PLR computation for every single node 
communication (from node source to the coordinator node), as 
shown in fig. 8. 

VI. CONCLUSIONS AND FUTURE WORK 

A complete testbed architecture for debugging, testing, 
managing and analyzing Cookie-based wireless sensor network 
prototypes and new developments has been designed and 
implemented, not only aiming to have a robust and reliable 
laboratory support tool for experiments, but also to increase the 
efficiency, connectivity and remote control of the wireless nodes in 
order to provide users with an effective way to interact with the 
platform anywhere at any time, hence joining key points to the 
future applications in this research field. As future approaches for 
continuing potentiating the usability of the proposed testbed 
architecture, one of the key features to be implemented is a service 
oriented GUI , so that users can access and control the testbed in a 
more intuitive way through web-based internet connectivity. 
Moreover, as the H W - S W platform has been created for being 
scalable, the deployment of more amounts of nodes along the 
facilities of the research lab is possible and feasible, so the next 
step is to increase the number of nodes connected to the testbed 
infrastructure. 
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