617 research outputs found

    Sea turtle nesting in the Ten Thousand Islands of Florida

    Get PDF
    Loggerhead sea turtles (Caretta caretta) nest in numerous substrate and beach types within the Ten Thousand Islands (TTl) of southwest Florida. Nesting beach selection was analyzed on 12 islands within this archipelago. Numerous physical characteristics were recorded to identify the relatedness of these variables and determine their importance for nesting beach selection in C. caretta. These variables were chosen after evaluating the islands, conducting literature searches and soliciting personal communications. Along transects, data were collected, on the following: height of canopy, beach width, overall slope (beach slope and slope of offshore approach) and sand samples analyzed for pH, percentage of water, percentage of organic content, percentage of carbonate and particle size (8 size classes). Data on ordinal aspect of beaches and beach length were also recorded and included in the analysis. All of the variables were analyzed by tree regression, incorporating the nesting data into the analysis. In the TTl, loggerheads appear to prefer wider beaches (p< 0.001; R2 = 0.56) that inherently have less slope, and secondarily, wider beaches that have low amounts of carbonate (p< O.00 1). In addition, C. caretta favors nest sites within or in close proximity to the supra-littoral vegetation zone of beaches in the TTl (p< 0.001). (86 page document

    Invasive perennial forb effects on gross soil nitrogen cycling and nitrous oxide fluxes depend on phenology.

    Get PDF
    Invasive plants can increase soil nitrogen (N) pools and accelerate soil N cycling rates, but their effect on gross N cycling and nitrous oxide (N2 O) emissions has rarely been studied. We hypothesized that perennial pepperweed (Lepidium latifolium) invasion would increase rates of N cycling and gaseous N loss, thereby depleting ecosystem N and causing a negative feedback on invasion. We measured a suite of gross N cycling rates and net N2 O fluxes in invaded and uninvaded areas of an annual grassland in the Sacramento-San Joaquin River Delta region of northern California. During the growing season, pepperweed-invaded soils had lower microbial biomass N, gross N mineralization, dissimilatory nitrate reduction to ammonium (DNRA), and denitrification-derived net N2 O fluxes (P&nbsp;&lt;&nbsp;0.02 for all). During pepperweed dormancy, gross N mineralization, DNRA, and denitrification-derived net N2 O fluxes were stimulated in pepperweed-invaded plots, presumably by N-rich litter inputs and decreased competition between microbes and plants for N (P&nbsp;&lt;&nbsp;0.04 for all). Soil organic carbon and total N concentrations, which reflect pepperweed effects integrated over longer time scales, were lower in pepperweed-invaded soils (P&nbsp;&lt;&nbsp;0.001 and P&nbsp;=&nbsp;0.04, respectively). Overall, pepperweed invasion had a net negative effect on ecosystem N status, depleting soil total N to potentially cause a negative feedback to invasion in the long term

    Quantum coherence engineering in the integer quantum Hall regime

    Full text link
    We present an experiment where the quantum coherence in the edge states of the integer quantum Hall regime is tuned with a decoupling gate. The coherence length is determined by measuring the visibility of quantum interferences in a Mach-Zehnder interferometer as a function of temperature, in the quantum Hall regime at filling factor two. The temperature dependence of the coherence length can be varied by a factor of two. The strengthening of the phase coherence at finite temperature is shown to arise from a reduction of the coupling between co-propagating edge states. This opens the way for a strong improvement of the phase coherence of Quantum Hall systems. The decoupling gate also allows us to investigate how inter-edge state coupling influence the quantum interferences' dependence on the injection bias. We find that the finite bias visibility can be decomposed into two contributions: a Gaussian envelop which is surprisingly insensitive to the coupling, and a beating component which, on the contrary, is strongly affected by the coupling.Comment: 4 pages, 5 figure

    Transformation kinetics of alloys under non-isothermal conditions

    Full text link
    The overall solid-to-solid phase transformation kinetics under non-isothermal conditions has been modeled by means of a differential equation method. The method requires provisions for expressions of the fraction of the transformed phase in equilibrium condition and the relaxation time for transition as functions of temperature. The thermal history is an input to the model. We have used the method to calculate the time/temperature variation of the volume fraction of the favored phase in the alpha-to-beta transition in a zirconium alloy under heating and cooling, in agreement with experimental results. We also present a formulation that accounts for both additive and non-additive phase transformation processes. Moreover, a method based on the concept of path integral, which considers all the possible paths in thermal histories to reach the final state, is suggested.Comment: 16 pages, 7 figures. To appear in Modelling Simul. Mater. Sci. En

    Synthesis of bioorganometallic nanomolar-potent CB2agonists containing a ferrocene unit

    Get PDF
    A small library of ferrocene-containing amides has been synthesized using standard amide coupling chemistry with ferrocenylamine. Ferrocene analogues of known bioactive adamantylamides were shown to be effective cannabinoid receptor (CB1 and CB2) agonists, displaying, in many cases, single-digit nanomolar potency. Three final ferrocene-containing derivatives have been characterized in the solid state by X-ray crystallography and display intramolecular hydrogen bonding of the type NH---C═O. N-Methylation of the amide, confirmed by X-ray crystallography, leads to both loss of hydrogen bonding and biological activity

    A Discrete Time Model for the Analysis of Medium-Throughput C. elegans Growth Data

    Get PDF
    BACKGROUND: As part of a program to predict the toxicity of environmental agents on human health using alternative methods, several in vivo high- and medium-throughput assays are being developed that use C. elegans as a model organism. C. elegans-based toxicological assays utilize the COPAS Biosort flow sorting system that can rapidly measure size, extinction (EXT) and time-of-flight (TOF), of individual nematodes. The use of this technology requires the development of mathematical and statistical tools to properly analyze the large volumes of biological data. METHODOLOGY/PRINCIPAL FINDINGS: Findings A Markov model was developed that predicts the growth of populations of C. elegans. The model was developed using observations from a 60 h growth study in which five cohorts of 300 nematodes each were aspirated and measured every 12 h. Frequency distributions of log(EXT) measurements that were made when loading C. elegans L1 larvae into 96 well plates (t = 0 h) were used by the model to predict the frequency distributions of the same set of nematodes when measured at 12 h intervals. The model prediction coincided well with the biological observations confirming the validity of the model. The model was also applied to log(TOF) measurements following an adaptation. The adaptation accounted for variability in TOF measurements associated with potential curling or shortening of the nematodes as they passed through the flow cell of the Biosort. By providing accurate estimates of frequencies of EXT or TOF measurements following varying growth periods, the model was able to estimate growth rates. Best model fits showed that C. elegans did not grow at a constant exponential rate. Growth was best described with three different rates. Microscopic observations indicated that the points where the growth rates changed corresponded to specific developmental events: the L1/L2 molt and the start of oogenesis in young adult C. elegans. CONCLUSIONS: Quantitative analysis of COPAS Biosort measurements of C. elegans growth has been hampered by the lack of a mathematical model. In addition, extraneous matter and the inability to assign specific measurements to specific nematodes made it difficult to estimate growth rates. The present model addresses these problems through a population-based Markov model

    PLR (Plastic Lithium Rechargeable) Batteries Using Nanoscale Materials: A Convenient Electrical Energy Power for the Future?

    Get PDF
    This communication describes the synthesis of: (i) non toxic and low cost nanocrystalline electrode materials which can be advantageously prepared at low temperature; (ii) highly conductive electrolyte membranes formed by the nano-encapsulation within a poly (acrylonitrile)-based polymer matrix of a solution of LiPF6 in organic solvants. The performances of rechargeable PLR (Plastic Lithium Rechargeable) batteries using the above mentioned components are presented
    corecore