27,207 research outputs found
Two-phase, passive separator-and-filter assembly
Assembly separates liquid from gas by passive hydrophilic/hydrophobic material approach. Apparatus is comprised of porous glass hydrophilic tubes. Quantity, lateral size, and pore size of glass tubes are determined by particular design requirements with regard to water rate, water quality contamination level, application endurance life, and operating differential pressure level
Global Fits of the CKM Matrix
We report upon the present status of global fits to Cabibbo-Kobayashi-Maskawa
matrix.Comment: 3 pages, 3 figures invited talk presented at EPS conference, Aachen
July 17-2
PT-symmetry broken by point-group symmetry
We discuss a PT-symmetric Hamiltonian with complex eigenvalues. It is based
on the dimensionless Schr\"{o}dinger equation for a particle in a square box
with the PT-symmetric potential . Perturbation theory clearly
shows that some of the eigenvalues are complex for sufficiently small values of
. Point-group symmetry proves useful to guess if some of the eigenvalues
may already be complex for all values of the coupling constant. We confirm
those conclusions by means of an accurate numerical calculation based on the
diagonalization method. On the other hand, the Schr\"odinger equation with the
potential exhibits real eigenvalues for sufficiently small
values of . Point group symmetry suggests that PT-symmetry may be broken
in the former case and unbroken in the latter one
A percutaneous needle biopsy technique for sampling the supraclavicular brown adipose tissue depot of humans.
Brown adipose tissue (BAT) has been proposed as a potential target tissue against obesity and its related metabolic complications. Although the molecular and functional characteristics of BAT have been intensively studied in rodents, only a few studies have used human BAT specimens due to the difficulty of sampling human BAT deposits. We established a novel positron emission tomography and computed tomography-guided Bergström needle biopsy technique to acquire human BAT specimens from the supraclavicular area in human subjects. Forty-three biopsies were performed on 23 participants. The procedure was tolerated well by the majority of participants. No major complications were noted. Numbness (9.6%) and hematoma (2.3%) were the two minor complications noted, which fully resolved. Thus, the proposed biopsy technique can be considered safe with only minimal risk of adverse events. Adoption of the proposed method is expected to increase the sampling of the supraclavicular BAT depot for research purposes so as to augment the scientific knowledge of the biology of human BAT
Scattering a pulse from a chaotic cavity: Transitioning from algebraic to exponential decay
The ensemble averaged power scattered in and out of lossless chaotic cavities
decays as a power law in time for large times. In the case of a pulse with a
finite duration, the power scattered from a single realization of a cavity
closely tracks the power law ensemble decay initially, but eventually
transitions to an exponential decay. In this paper, we explore the nature of
this transition in the case of coupling to a single port. We find that for a
given pulse shape, the properties of the transition are universal if time is
properly normalized. We define the crossover time to be the time at which the
deviations from the mean of the reflected power in individual realizations
become comparable to the mean reflected power. We demonstrate numerically that,
for randomly chosen cavity realizations and given pulse shapes, the probability
distribution function of reflected power depends only on time, normalized to
this crossover time.Comment: 23 pages, 5 figure
Measurements of the semileptonic decays B[overbar]→Dℓν[overbar] and B[overbar]→D^*ℓν[overbar] using a global fit to DXℓν[overbar] final states
Semileptonic B[overbar] decays to DXℓν[overbar](ℓ=e or μ) are selected by reconstructing D^0ℓ and D^+ℓ combinations from a sample of 230×10^6 Υ(4S)→BB[overbar] decays recorded with the BABAR detector at the PEP-II e^+e^- collider at SLAC. A global fit to these samples in a three-dimensional space of kinematic variables is used to determine the branching fractions B(B^-→D^0ℓν[overbar])=(2.34±0.03±0.13)% and B(B^-→D^(*0)ℓν[overbar])=(5.40±0.02±0.21)% where the errors are statistical and systematic, respectively. The fit also determines form-factor parameters in a parametrization based on heavy quark effective theory, resulting in ρ_D^2=1.20±0.04±0.07 for B[overbar]→Dℓν[overbar] and ρ_(D*)^2=1.22±0.02±0.07 for B[overbar]→D^*ℓν[overbar]. These values are used to obtain the product of the Cabibbo-Kobayashi-Maskawa matrix element |V_(cb)| times the form factor at the zero recoil point for both B[overbar]→Dℓν[overbar] decays, G(1)|V_(cb)|=(43.1±0.8±2.3)×10^(-3), and for B[overbar]→D^*ℓν[overbar] decays, F(1)|V_(cb)|=(35.9±0.2±1.2)×10^(-3)
A New Template Family For The Detection Of Gravitational Waves From Comparable Mass Black Hole Binaries
In order to improve the phasing of the comparable-mass waveform as we
approach the last stable orbit for a system, various re-summation methods have
been used to improve the standard post-Newtonian waveforms. In this work we
present a new family of templates for the detection of gravitational waves from
the inspiral of two comparable-mass black hole binaries. These new adiabatic
templates are based on re-expressing the derivative of the binding energy and
the gravitational wave flux functions in terms of shifted Chebyshev
polynomials. The Chebyshev polynomials are a useful tool in numerical methods
as they display the fastest convergence of any of the orthogonal polynomials.
In this case they are also particularly useful as they eliminate one of the
features that plagues the post-Newtonian expansion. The Chebyshev binding
energy now has information at all post-Newtonian orders, compared to the
post-Newtonian templates which only have information at full integer orders. In
this work, we compare both the post-Newtonian and Chebyshev templates against a
fiducially exact waveform. This waveform is constructed from a hybrid method of
using the test-mass results combined with the mass dependent parts of the
post-Newtonian expansions for the binding energy and flux functions. Our
results show that the Chebyshev templates achieve extremely high fitting
factors at all PN orders and provide excellent parameter extraction. We also
show that this new template family has a faster Cauchy convergence, gives a
better prediction of the position of the Last Stable Orbit and in general
recovers higher Signal-to-Noise ratios than the post-Newtonian templates.Comment: Final published version. Accepted for publication in Phys. Rev.
Measurements of the τ mass and the mass difference of the τ^+ and τ^- at BABAR
We present the result from a precision measurement of the mass of the τ lepton, M_τ, based on 423 fb^(-1) of data recorded at the Υ(4S) resonance with the BABAR detector. Using a pseudomass endpoint method, we determine the mass to be 1776.68±0.12(stat)±0.41(syst) MeV. We also measure the mass difference between the τ^+ and τ^-, and obtain (M_(τ+)-M_(τ-))/M_(AVG)^τ=(-3.4±1.3(stat)±0.3(syst))×10^(-4), where M^τ_(AVG) is the average value of M_(τ+) and M_(τ-)
- …