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We discuss a parity-time (PT) symmetric Hamiltonian with complex eigenvalues. It
is based on the dimensionless Schrödinger equation for a particle in a square box
with the PT-symmetric potential V (x, y) = iaxy. Perturbation theory clearly shows
that some of the eigenvalues are complex for sufficiently small values of |a|. Point-
group symmetry proves useful to guess if some of the eigenvalues may already be
complex for all values of the coupling constant. We confirm those conclusions by
means of an accurate numerical calculation based on the diagonalization method. On
the other hand, the Schrödinger equation with the potential V (x, y) = iaxy2 exhibits
real eigenvalues for sufficiently small values of |a|. Point group symmetry suggests
that PT-symmetry may be broken in the former case and unbroken in the latter one.
C© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4870642]

I. INTRODUCTION

It was shown some time ago that some complex non-Hermitian Hamiltonians may exhibit
real eigenvalues.1, 2 The conjecture that such intriguing feature may be due to unbroken parity-
time (PT) symmetry3 gave rise to a very active field of research4 (and references therein). The
first studied PT-symmetric models were mainly one-dimensional anharmonic oscillators3–6 and
lately the focus shifted towards multidimensional problems.7–14 Among the most widely studied
multidimensional PT-symmetric models we mention the complex versions of the Barbanis7, 8, 10–14

and Hénon-Heiles7, 12 Hamiltonians. Several methods have been applied to the calculation of their
spectra: the diagonalization method,7–10, 12, 13 perturbation theory,7, 9, 10, 12 classical and semiclassical
approaches,7, 8 among others.12, 14 Typically, those models depend on a potential parameter g so
that the Hamiltonian is Hermitian when g = 0 and non-Hermitian when g �= 0. Bender and Weir13

conjectured that some of those models may exhibit phase transitions so that their spectra are real for
sufficiently small values of |g|. Such phase transitions appear to be a high-energy phenomenon.

Multidimensional oscillators exhibit point-group symmetry (PGS).15, 16 As far as we know such
a property has not been taken into consideration in those earlier studies of the PT-symmetric models,
except for the occasional parity in one of the variables. It is more than likely that PGS may be
relevant to the study of the spectra of multidimensional PT-symmetric Hamiltonians. This paper is
expected to be a useful contribution in that direction.

The research on non-Hermitian Hamiltonians has been mainly focussed on finding models with
real spectrum. It is our purpose to show an example of PT-symmetric Hamiltonian with complex
eigenvalues; a Hamiltonian with the phase transition at the Hermitian limit g = 0. We will also show
that PGS provides a simple and clear explanation of why the eigenvalues of such model are complex
and not real as the other problems discussed so far.

In Sec. II we consider the dimensionless Schrödinger equation for a particle in a square box
with the potential iaxy that is obviously PT-symmetric. In Sec. III we show that perturbation theory
predicts that some of the eigenvalues are complex for sufficiently small values of |a|. In Sec. IV
we analyze the eigenfunctions of the unperturbed and perturbed Hamiltonians from the point of
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view of PGS and show why some eigenvalues are expected to be complex. In Sec. V we obtain the
eigenvalues and eigenfunctions accurately by means of the diagonalization method and confirm the
conclusions of Secs. III–IV. In Sec. VI we consider the particle in a square box with the potential
iaxy2 that resembles part of the potential of the PT-symmetric version of the Barbanis Hamiltonian.
In this case PGS shows that PT symmetry may not be broken for sufficiently small values of |a|.
This conclusion is confirmed by the diagonalization method. Finally, in Sec. VII we summarize
the main results of the paper, draw conclusions, and put forward a somewhat general recipe for the
appearance of complex eigenvalues in a given multidimensional non-Hermitian Hamiltonian.

II. BOX MODEL WITH C2v POINT-GROUP SYMMETRY

We first consider the Schrödinger equation Hψ = Eψ with the dimensionless Hamiltonian
operator,

H = p2
x + p2

y + gxy, (1)

and the boundary conditions

ψ(±1, y) = 0, ψ(x,±1) = 0. (2)

This Hamiltonian is Hermitian when g is real and PT-symmetric when g is imaginary. In fact, when
g = ia, a real, the Hamiltonian is invariant under two antiunitary transformations,17

Ax H Ax = H, Ay H Ay = H (3)

generated by Ax = PxT and Ay = PyT, where T is the time-reversal operator18 and Px and Py are the
parity transformations,

Px : (x, y, px , py) → (−x, y,−px , py),

Py : (x, y, px , py) → (x,−y, px ,−py). (4)

It follows from Eq. (3) that

H Axψ = Ax Hψ = Ax Eψ = E∗ Axψ. (5)

That is to say, if ψ is eigenfunction of H with eigenvalue E then Axψ is eigenfunction with eigenvalue
E∗. Obviously, the same conclusion applies to Ayψ . When PT symmetry is unbroken,

Axψ = λψ, |λ| = 1, (6)

the corresponding eigenvalue is real.4 In a recent paper we have shown that the eigenvalue may be
real even when this condition is manifestly violated.21 Later on we will discuss this point in more
detail. All the Hamiltonians studied previously exhibit unbroken PT symmetry for sufficiently small
values of |g|.7–14 In what follows we show that the model depicted above behaves in a quite different
way.

III. PERTURBATION THEORY

When g = 0 the eigenvalues and eigenfunctions of the simple model described in Sec. II are
those of the particle in a square box,

E (0)
mn =

(
m2 + n2

)
π2

4
, m, n = 1, 2, . . . ,

ψ (0)
mn(x, y) = ϕmn(x, y) = sin

(
mπ (x + 1)

2

)
sin

(
nπ (y + 1)

2

)
, (7)

and we appreciate that the eigenfunctions with m �= n are two-fold degenerate. There are accidental
degeneracies that occur when m2

1 + n2
1 = m2

2 + n2
2 but they are not relevant for the present discussion.
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For example, the three eigenfunctions ψ
(0)
7 1 , ψ

(0)
1 7 , and ψ

(0)
5 5 share the same eigenvalue but only the

first two ones are consequence of the symmetry of the problem.
By means of perturbation theory it is quite easy to prove that some of the eigenvalues are

complex for sufficiently small values of |a|. The perturbation correction of first order E (1)
mn vanishes

when n = m + 2j , j = 0, 1, . . . but it is nonzero if n = m + 2j + 1,

E (1)+
mn = 256m2 (2 j + m + 1)2

π4 (2 j + 1)4 (2 j + 2m + 1)4 ,

E (1)−
mn = − 256m2 (2 j + m + 1)2

π4 (2 j + 1)4 (2 j + 2m + 1)4 . (8)

It is clear that for sufficiently small values of |a| these levels behave approximately as linear functions
of g = ia. In other words, the phase transition takes place at the Hermitian limit a = 0. This result is
different from that for the PT-symmetric oscillators studied so far that exhibit a vanishing perturbation
correction of first order.7, 12

IV. POINT-GROUP SYMMETRY

We can understand the occurrence of complex eigenvalues more clearly from the point of view of
PGS. Since the model is two-dimensional its behaviour with respect to the coordinate z is irrelevant
and, consequently, the choice of the point group is not unique. For the description of the unperturbed
model g = 0 we choose the point group C4v with symmetry operations,

E : (x, y) → (x, y),

C4 : (x, y) → (y,−x),

C3
4 : (x, y) → (−y, x),

C2 : (x, y) → (−x,−y),

σv1 : (x, y) → (y, x),

σv2 : (x, y) → (−y,−x),

σd1 : (x, y) → (x,−y),

σd2 : (x, y) → (−x, y), (9)

where Ck
n is a rotation by an angle 2πk/n around an axis perpendicular to the center of the square box

(C2
4 = C2) and σv and σ d are vertical reflection planes.19, 20 For simplicity we omit the transformation

of the momenta when it is similar to that of the coordinates. The eigenfunctions form bases for the
irreducible representations {A1, A2, B1, B2, E} as indicated below:

A1 : {ϕ2m−1 2m−1}, {ϕ+
2m−1 2n−1},

A2 : {ϕ−
2m 2n},

B1 : {ϕ2m 2m}, {ϕ+
2m 2n},

B2 : {ϕ−
2m−1 2n−1},

E : {ϕ2m−1 2n, ϕ2n 2m−1},

ϕ±
m n = 1√

2
(ϕm n ± ϕn m) ,

m, n = 1, 2, . . . . (10)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

200.130.18.1 On: Mon, 21 Apr 2014 18:51:22



042107-4 F. M. Fernández and J. Garcia J. Math. Phys. 55, 042107 (2014)

As expected some pairs of two-fold degenerate eigenfunctions form bases for the irreducible rep-
resentation E. In addition to it, pairs of eigenfunctions with symmetry A1 and B2 (ϕ+

2m−1 2n−1,
ϕ−

2m−1 2n−1) as well as A2 and B1 (ϕ−
2m 2n , ϕ+

2m 2n) are also degenerate.
When g �= 0 a suitable point group is C2v with symmetry operations {E, C2, σv1, σv2} and

irreducible representations {A1, A2, B1, B2}. The eigenfunctions are linear combinations of the
form,

ψ A1 =
∑

m

∑
n

(
a A1

mnϕ2m−1 2m−1 + bA1
mnϕ2m 2m + cmnϕ

+
2m−1 2n−1 + dmnϕ

+
2m 2n

)
,

ψ A2 =
∑

m

∑
n

(
a A2

mnϕ
−
2m−1 2n−1 + bA2

mnϕ
−
2m 2n

)
,

ψ B1 =
∑

m

∑
n

aB1
mnϕ

+
2m−1 2n,

ψ B2 =
∑

m

∑
n

aB2
mnϕ

−
2m−1 2n. (11)

It is clear that the perturbation removes the degeneracy in such a way that the two-fold degenerate
unperturbed eigenfunctions E become the perturbed eigenfunctions of symmetry B1 and B2. As a
result, every eigenvalue EB1 is the complex conjugate of an eigenvalue EB2 (EB2 = E∗

B1
). As shown

in Sec. III, the degeneracy of these levels is removed at first order of perturbation theory and it is not
difficult to verify that the pair of integrals

〈
ϕ±

2m 2n−1

∣∣ xy
∣∣ϕ±

2m 2n−1

〉
give us exactly the perturbation

corrections in Eq. (8). On the other hand, the degenerate unperturbed eigenfunctions of symmetry
A1, A2, B1, and B2 become the perturbed eigenfunctions of symmetry A1 and A2. In this case the
perturbation correction of first order vanishes and the degeneracy is removed at least at second order.
If, as in the case of the models studied earlier by other authors, all the perturbation corrections of
odd order vanish,7, 12 then we may expect real eigenvalues for sufficiently small values of |a|.

PGS gives us a clear description of the occurrence of complex eigenvalues. If we take into
account Eq. (5) and that Axϕ

+
2m−1 2n = −ϕ−

2m−1 2n then we realize that Axψ
B1 = λB1 B2ψ

B2 . We
appreciate that PT symmetry is broken for all |g| �= 0 and that EB2 = E∗

B1
as mentioned above.

However, in principle it may be possible that both eigenvalues were real and degenerate as in the
case of the rigid rotor studied in an earlier paper.21 In the present case we know that they are
complex as shown in Sec. III. If we apply the same reasoning to the eigenfunctions of symmetry
A1 and A2 we realize that PT-symmetry may not be broken for them because Axψ

A1 = λA1ψ
A1

and Axψ
A2 = λA2ψ

A2 (where |λ| = 1) that follows from the fact that the symmetry-adapted basis
functions are invariant or merely change sign under this antiunitary operation (and also under Ay).

V. DIAGONALIZATION METHOD

We can obtain sufficiently accurate eigenvalues and eigenfunctions of the box model by means of
the diagonalization method. Diagonalization of the Hamiltonian matrix H in the basis set {ϕmn} gives
us the lowest eigenvalues of the Hamiltonian operator as well as the coefficients of the expansion of
the eigenfunctions in the basis set

ψ =
∑

m

∑
n

amnϕmn. (12)

Alternatively, we can diagonalize Hamiltonian matrices HS for each of the irreducible representations
S = A1, A2, B1, B2 of the point group C2v and thus obtain the corresponding sets of eigenfunctions
(11) separately. In this case the dimension of the resulting secular equations is noticeably smaller.

It is well known that the coefficients of the characteristic polynomial generated by the full
matrix H are real.22 The coefficients of the characteristic polynomials generated by HA1 and HA2 are
polynomial functions of g2 and therefore real. On the other hand, the coefficients of the characteristic
polynomials generated by the matrices HB1 and HB2 are polynomial functions of g and therefore
complex.
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FIG. 1. First eigenvalues of the model (1 ).

Figure 1 shows the real and imaginary parts of the first eigenvalues of the Hamiltonian (1)
for a wide range of values of a. The eigenvalues for symmetry A1 and A2 are real for sufficiently
small values of a. Some pairs of them coalesce at critical values ac of the coupling constant and
emerge as pairs of complex numbers for a > ac. This occurrence of exceptional points is similar
to that already found for other two-dimensional models.7–14 On the other hand, the eigenvalues for
symmetry B1 and B2 are complex for all values of a. This kind of eigenvalues does not appear in
those non-Hermitian Hamiltonians studied earlier. We say that the PT-symmetric Hamiltonian (1)
exhibits a PT phase transition at the trivial Hermitian limit.

VI. BOX MODEL WITH C2 POINT-GROUP SYMMETRY

In order to illustrate the difference between present PT-symmetric model and those studied
earlier, in this section we choose the particle in a square box with the interaction potential

V (x, y) = gxy2, (13)

that resembles the one in the Barbanis Hamiltonian.7, 8, 10–14 In this case we may choose the point
group C2 with symmetry operations {E, C2}, where C2 : (x, y) → (x, − y). The bases for the
irreducible representations {A, B} are {ϕm 2n − 1} and {ϕm 2n}, respectively. The antiunitary operator
A = PxT, where Px: (x, y, px, py) → (− x, y, − px, py), leaves the Hamiltonian invariant when g =
ia, a real. It follows from Aϕm n = (−1)m + 1ϕm n and Eq. (5) that it is possible that AψA = λAψA

and AψB = λBψB; that is to say symmetry may be unbroken and the eigenvalues may be real for
sufficiently small values of |a|. This observation is consistent with the fact that the perturbation
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FIG. 2. First eigenvalues of the model (13).

correction of first order vanishes for all the states, which suggests that the perturbation expansion
exhibits only even powers of g as in the case of the Barbanis Hamiltonian.7, 12

The results of the diagonalization method are shown in Figure 2. All the eigenvalues of both
types of symmetry appear to be real for sufficiently small values of |a| as expected from the argument
based on PGS. Both sets of eigenvalues exhibit exceptional points where a pair coalesce and emerge
as complex conjugate numbers. The main features of the spectrum of this model resemble those
described in earlier problems.

VII. CONCLUSIONS

In this paper we have discussed two non-Hermitian Hamiltonians with completely different
spectra. Both are representative of a wider class of non-Hermitian Hamiltonians that depend on a
parameter g in such a way that they are Hermitian when g = 0 and PT-symmetric for g nonzero and
imaginary (say, g = ia, a real). The C2 model is similar to those studied earlier that were chosen in
such a way that all the eigenvalues are real when 0 < a < ac.7–14 It is said that they exhibit a PT
phase transition at a = ac that was conjectured to be a high-energy phenomenon13 (at least for those
examples). Consistent with real eigenvalues is the fact that their perturbation series exhibit only even
powers of g.7, 9, 10, 12

The C2v model is the main goal of this paper because it appears to exhibit complex eigenvalues
for all values of a �= 0. Therefore, in this case the PT phase transition takes place at the trivial
Hermitian limit. The reason for this behaviour is that the degeneracy of the unperturbed Hamiltonian
is broken at first order of perturbation theory so that the eigenvalues are almost linear functions of g
= ia for sufficiently small values of |a|.

It has been our purpose to show that PGS is quite useful for the study of the spectra of such
non-Hermitian Hamiltonians. The analysis of the eigenfunctions from such point of view clearly
shows that PT symmetry is broken for those that are bases for some irreducible representations (B1

and B2 in the present case). We may formulate the main ideas in a somewhat more general way. In
general, the eigenfunctions are of the form

ψ S =
∑

j

cS
j ϕ

S
j , (14)
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where S is an irreducible representation of the point group for the model. If AϕS
j = λS

j ϕ
S
j , where

A is an antiunitary operation that leaves the Hamiltonian invariant, then it is possible that AψS =
λSψ

S (unbroken PT symmetry) and the corresponding eigenvalues are real. All the models studied
before exhibit this property.7–14 The eigenfunctions of symmetry A1 and A2 of present C2v model
also behave in this way. The situation is quite different in the case of the eigenfunctions of symmetry
B1 and B2 that we may generalize it in the following way: when AϕS

j = λSS′
k ϕS′

k where S′ �= S then

PT symmetry is broken Aψ S = λSS′ψ S′
and ES = E∗

S′ . However, this relationship is not a rigorous
proof that the eigenvalues are complex. In a recent paper we have shown that the eigenvalues of a
PT symmetric rigid rotor are real even when PT-symmetry is broken as just indicated.21 In the case
of present C2v model the eigenvalues are in fact complex and for this reason we have decided to coin
the term PT-symmetry broken by PGS.

Note added in the proof: S. Klaiman and L. S. Cederbaum also applied point-group symmetry to
the study of some non-Hermitian oscillators in Phys. Rev. A 78, 062113 (2008). However, they only
considered Abelian groups with one-dimensional irreducible representations and, consequently, all
their models exhibited unbroken PT symmetry for sufficiently small |g|.
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