28 research outputs found

    Variability in and coupling of larval availability and settlement of the mussel Perna perna : a spatio-temporal approach

    Get PDF
    Population dynamics of many intertidal organisms are highly influenced by the abundance and distribution of planktonic larvae in the water column and their arrival on the shore. The brown mussel, Perna perna was used to investigate two of the primary processes that affect population size and dynamics, larval availability and settlement, on the south coast of South Africa. Perna perna is a dominant species on rocky shores of the southern and eastern coasts of South Africa. It creates three-dimensional beds that provide habitats for many other species and hence promotes biodiversity. Larval availability and settlement were examined at different spatial and temporal scales using a nested experimental design. To detect possible relationships between larval availability and settlement, the studies were simultaneous. Two sites, 4km apart, were chosen to investigate mussel settlement patterns. Within each site, three locations (300m from each other) were selected. At each location, five artificial settler collectors were placed at approximately 20cm intervals. Collectors were replaced at a range of time intervals, from daily to seasonal, for 16 months. Each intertidal location was paired with an offshore station, 500m from the shore, where larval availability was measured. At each offshore station, three vertical hauls were collected twice a month using a plankton net. Plankton sampling lasted for 14 months and was designed to examine variability on three temporal scales: seasonal, lunar and daily. The results showed no correlation between the distribution of larvae in the water and settlers on the shore. While larvae were abundant in the water at the start of sampling, they became very rare throughout the rest of the study at both sites and all locations. In contrast, distinct peaks of settler abundance were observed during the seasonal settlement study. In addition to the expected, strong temporal variation that emerged from both studies at all time scales, spatial patterns of variability were also observed. While no spatial effect was detected for the larvae in the water column, there was distinct spatial variation in settlement at the location level: some locations always showed higher settlement than others. These results suggest that, on scales of hundreds of meters to kilometers, larval availability and settlement are very unpredictable in time and that differential delivery of larvae occurs from nearshore waters to the shore. Although the effect of the state of the moon (new or full) was not significant in either study, more settlers seemed to arrive on the shore during new moon. Wind direction did not correlate significantly with settlement. However, the dropping of offshore winds and the prevalence of onshore winds, which are characteristic of summer, may be linked to the start of settlement. Nevertheless, further investigations on tidal or lunar cycles and on the influence of wind on surface currents are required to clarify the effects of moon and wind on settlement

    Temporal scales of variation in settlement and recruitment of the mussel Perna perna (Linnaeus, 1758)

    Get PDF
    Population dynamics of many intertidal organisms are strongly affected by the abundance and distribution of larvae arriving on the shore. In particular, not only absolute numbers of settlers but also the degree of synchronisation of settlement can have a strong influence on whether density-dependent or density-independent processes shape adult shape populations. Temporal variation in rates of settlement and recruitment of the mussel Perna perna on the south coast of South Africa was investigated using a nested spatial design at different temporal scales. Variability in settlement at spring tides was examined at two temporal scales: lunar (to investigate the effect of state of the moon on settlement) and tidal (to investigate the influence of state of the tide on mussel settlement). Recruitment over neap tides was examined at one temporal scale, fortnight (to investigate the effect of date on mussel recruitment). Strong temporal variation was evident for both settlement and recruitment, but not at all time scales. Distinct peaks of settler/recruit abundance were observed during the lunar and neap tide studies. Recruitment intensity differed over the course of the year, and pulsing of recruitment was generally synchronised among locations. However, the strength of pulsing differed dramatically among locations, giving a significant interaction between fortnight and location. The finest temporal scale, investigated in the tidal study, did not reveal a significant effect of the state of the tide on settlement. The state of the moon (new or full) was not significant as a main factor (p = 0.052), although generally more settlers arrived on the shore during new moon. Phase of the moon appeared to have an effect on settler abundances, but only when and where densities were high

    Environmental domains and range-limiting mechanisms: testing the Abundant Centre Hypothesis using southern African sandhoppers

    Get PDF
    Predicting shifts of species geographical ranges is a fundamental challenge for conservation ecologists given the great complexity of factors involved in setting range limits. Distributional patterns are frequently modelled to “simplify” species responses to the environment, yet the central mechanisms that drive a particular pattern are rarely understood. We evaluated the distributions of two sandhopper species (Crustacea, Amphipoda, Talitridae), Talorchestia capensis and Africorchestia quadrispinosa along the Namibian and South African coasts, encompassing three biogeographic regions influenced by two different oceanographic systems, the Benguela and Agulhas currents. We aimed to test whether the Abundant Centre Hypothesis (ACH) can explain the distributions of these species’ abundances, sizes and sex ratios and examined which environmental parameters influence/drive these distributions. Animals were collected during a once-off survey at 29 sites over c.3500 km of coastline. The ACH was tested using a non-parametric constraint space analysis of the goodness of fit of five hypothetical models. Distance Based Linear Modelling (DistLM) was performed to evaluate which environmental traits influenced the distribution data. Abundance, size and sex ratio showed different patterns of distribution. A ramped model fitted the abundance (Ramped North) and size (Ramped South) distribution for A. quadrispinosa. The Inverse Quadratic model fitted the size distribution of T. capensis. Beach slope, salinity, sand temperature and percentage of detritus found on the shore at the time of collection played important roles in driving the abundance of A. quadrispinosa. T. capensis was mainly affected by salinity and the morphodynamic state of the beach. Our results provided only some support for the ACH predictions. The DistLM confirmed that the physical state of the beach is an important factor for sandy beach organisms. The effect of salinity and temperature suggest metabolic responses to local conditions and a role in small to mesoscale shifts in the range of these populations

    Sand stress as a non-determinant of habitat segregation of indigenous (Perna perna) and invasive (Mytilus galloprovincialis) mussels in South Africa

    Get PDF
    Periodical sand inundation influences diversity and distribution of intertidal species throughout the world. This study investigates the effect of sand stress on survival and on habitat segregation of the two dominant mussel species living in South Africa, the invasive Mytilus galloprovincialis and the indigenous Perna perna. P. perna occupies a lower intertidal zone which, monthly surveys over 1.5 years showed, is covered by sand for longer periods than the higher M. galloprovincialis zone. Despite this, when buried under sand, P. perna mortality rates were significantly higher than those of M. galloprovincialis in both laboratory and in field experiments. Under anoxic condition, P. perna mortality rates were still significantly higher than those for M. galloprovincialis, but both species died later than when exposed to sand burial, underlining the importance of the physical action of sand on mussel internal organs. When buried, both species accumulate sediments within the shell valves while still alive, but the quantities are much greater for P. perna. This suggests that P. perna gills are more severely damaged by sand abrasion and could explain its higher mortality rates. M. galloprovincialis has longer labial palps than P. perna, indicating a higher particle sorting ability and consequently explaining its lower mortality rates when exposed to sand in suspension. Habitat segregation is often explained by physiological tolerances, but in this case, such explanations fail. Although sand stress strongly affects the survival of the two species, it does not explain their vertical zonation. Contrary to our expectations, the species that is less well adapted to cope with sand stress maintains dominance in a habitat where such stress is high

    Marine heatwaves exceed cardiac thermal limits of adult sparid fish (Diplodus capensis, Smith 1884)

    Get PDF
    Climate change not only drives increases in global mean ocean temperatures, but also in the intensity and duration of marine heatwaves (MHWs), with potentially deleterious effects on local fishes. A first step to assess the vulnerability of fishes to MHWs is to quantify their upper thermal thresholds and contrast these limits against current and future ocean temperatures during such heating events. Heart failure is considered a primary mechanism governing the upper thermal limits of fishes and begins to occur at temperatures where heart rate fails to keep pace with thermal dependency of reaction rates. This point is identified by estimating the Arrhenius breakpoint temperature (TAB), which is the temperature where maximum heart rate (fHmax) first deviates from its exponential increase with temperature and the incremental Q10 breakpoint temperature (TQB), which is where the Q10 temperature coefficient (relative change in heart rate for a 10◦C increase in temperature) for fHmax abruptly decreases during acute warming. Here we determined TAB, TQB and the temperature that causes cardiac arrhythmia (TARR) in adults of the marine sparid, Diplodus capensis, using an established technique. Using these thermal indices results, we further estimated adult D. capensis vulnerability to contemporary MHWs and increases in ocean temperatures along the warm-temperate south-east coast of South Africa. For the established technique, we stimulated fHmax with atropine and isoproterenol and used internal heart rate loggers to measure fHmax under conditions of acute warming in the laboratory. We estimated average TAB, TQB, and TARR values of 20.8◦C, 21.0◦C, and 28.3◦C. These findings indicate that the physiology of D. capensis will be progressively compromised when temperatures exceed 21.0◦C up to a thermal end-point of 28.3◦C. Recent MHWs along the warm-temperate south-east coast, furthermore, are already occurring within the TARR threshold (26.6–30.0◦C) for cardiac function in adult D. capensis, suggesting that this species may already be physiologically compromised by MHWs. Predicted increases in mean ocean temperatures of a conservative 2.0◦C, may further result in adult D. capensis experiencing more frequent MHWs as well as a contraction of the northern range limit of this species as mean summer temperatures exceed the average TARR of 28.3◦C.National Research Foundation (NRF) Research Development Grants for y-rated researchers: 93382; NRF Extension Doctoral Scholarship 95092, 111071info:eu-repo/semantics/publishedVersio

    The establishment of the gut microbiota in 1-year-aged infants: from birth to family food

    Get PDF
    none12noAbstract Purpose With the aim of characterizing the gastrointestinal (GI) microbiota and contextually determine how different prenatal, perinatal, and postnatal factors affected its composition in early childhood, infants were enrolled in a longitudinal-prospective study named “A.MA.MI.” (Alimentazione MAmma e bambino nei primi MIlle giorni; NCT04122612, October 2019). Methods Forty-five fecal samples were collected at 12 months of infants’ age, identified as the 3rd follow-up (T3). The evaluated variables were pre-gestational weight and weight gain during pregnancy, delivery mode, feeding, timing of weaning, and presence/absence of older siblings. Fecal alpha and beta-diversities were analyzed. Noteworthy, to determine the impact of the influencing factors, multivariate analyses were conducted. Results At T3, all prenatal and perinatal variables did not result to be significant whereas, among the postnatal variables, type of milk-feeding and weaning showed the greatest contribution in shaping the microbiota. Although aged 1 year, infants exclusively breastfed until 6 months were mainly colonized by Lactobacillaceae and Enterobacteriaceae. Differently, Bacteroidaceae characterized the microbiota of infants that were never breastfed in an exclusive way. Moreover, although an early introduction of solid foods determined higher values of Faith’s PD, high abundances of Ruminococcaceae and Faecalibacterium mainly associated with infants weaned after the 4th month of age. Conclusion The microbial colonization during the first year of life is likely affected by a simultaneous effect of multiple variables playing a significant role at different times. Therefore, these data contribute to add evidence concerning the complex multifactorial interaction between GI microbiota and various stimuli affecting infants during the early stages of life.openMirco Vacca; Benedetta Raspini; Francesco Maria Calabrese; Debora Porri; Rachele De Giuseppe; Marcello Chieppa; Marina Liso; Rosa Maria Cerbo; Elisa Civardi; Francesca Garofoli; Hellas Cena; Maria De AngelisVacca, Mirco; Raspini, Benedetta; Maria Calabrese, Francesco; Porri, Debora; De Giuseppe, Rachele; Chieppa, Marcello; Liso, Marina; Maria Cerbo, Rosa; Civardi, Elisa; Garofoli, Francesca; Cena, Hellas; De Angelis, Mari

    Thermal sensitivity of the crab Neosarmatium africanum in tropical and temperate mangroves on the east coast of Africa

    Get PDF
    Mangrove forests are amongst the tropical marine ecosystems most severely affected by rapid environmental change, and the activities of key associated macrobenthic species contribute to their ecological resilience. Along the east coast of Africa, the amphibious sesarmid crab Neosarmatium africanum (=meinerti) plays a pivotal role in mangrove ecosystem functioning through carbon cycling and sediment bioturbation. In the face of rapid climate change, identifying the sensitivity and vulnerability to global warming of this species is of increasing importance. Based on a latitudinal comparison, we measured the thermal sensitivity of a tropical and a temperate population of N. africanum, testing specimens at the centre and southern limit of its distribution, respectively. We measured metabolic oxygen consumption and haemolymph dissolved oxygen content during air and water breathing within a temperature range that matched the natural environmental conditions. The results indicate different thermal sensitivities in the physiological responses of N. africanum from tropical and temperate populations, especially during air breathing. The differences observed in the thermal physiology between the two populations suggest that the effect of global warming on this important mangrove species may be different under different climate regimes

    A functional analysis reveals extremely low redundancy in global mangrove invertebrate fauna

    Get PDF
    Deforestation results in habitat fragmentation, decreasing diversity, and functional degradation. For mangroves, no data are available on the impact of deforestation on the diversity and functionality of the specialized invertebrate fauna, critical for their functioning. We compiled a global dataset of mangrove invertebrate fauna comprising 364 species from 16 locations, classified into 64 functional entities (FEs). For each location, we calculated taxonomic distinctness (Δ+), functional richness (FRi), functional redundancy (FRe), and functional vulnerability (FVu) to assess functional integrity. Δ+ and FRi were significantly related to air temperature but not to geomorphic characteristics, mirroring the global biodiversity anomaly of mangrove trees. Neither of those two indices was linked to forest area, but both sharply decreased in human-impacted mangroves. About 60% of the locations showed an average FRe < 2, indicating that most of the FEs comprised one species only. Notable exceptions were the Eastern Indian Ocean and west Pacific Ocean locations, but also in this region, 57% of the FEs had no redundancy, placing mangroves among the most vulnerable ecosystems on the planet. Our study shows that despite low redundancy, even small mangrove patches host truly multifunctional faunal assemblages, ultimately underpinning their services. However, our analyses also suggest that even a modest local loss of invertebrate diversity could have significant negative consequences for many mangroves and cascading effects for adjacent ecosystems. This pattern of faunal-mediated ecosystem functionality is crucial for assessing the vulnerability of mangrove forests to anthropogenic impact and provides an approach to planning their effective conservation and restoration
    corecore