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Abstract 
Population dynamics of many intertidal organisms are highly influenced by the 

abundance and distribution of planktonic larvae in the water column and their arrival on 

the shore. The brown mussel, Perna perna was used to investigate two of the primary 

processes that affect population size and dynamics, larval availability and settlement, on 

the south coast of South Africa. Perna perna is a dominant species on rocky shores of the 

southern and eastern coasts of South Africa. It creates three-dimensional beds that 

provide habitats for many other species and hence promotes biodiversity. 

Larval availability and settlement were examined at different spatial and temporal scales 

using a nested experimental design. To detect possible relationships between larval 

availability and settlement, the studies were simultaneous.  

Two sites, 4km apart, were chosen to investigate mussel settlement patterns. Within each 

site, three locations (300m from each other) were selected. At each location, five artificial 

settler collectors were placed at approximately 20cm intervals. Collectors were replaced 

at a range of time intervals, from daily to seasonal, for 16 months. Each intertidal location 

was paired with an offshore station, 500m from the shore, where larval availability was 

measured. At each offshore station, three vertical hauls were collected twice a month 

using a plankton net. Plankton sampling lasted for 14 months and was designed to 

examine variability on three temporal scales: seasonal, lunar and daily. 

The results showed no correlation between the distribution of larvae in the water and 

settlers on the shore. While larvae were abundant in the water at the start of sampling, 

they became very rare throughout the rest of the study at both sites and all locations. In 

contrast, distinct peaks of settler abundance were observed during the seasonal settlement 

study.  

In addition to the expected, strong temporal variation that emerged from both studies at 

all time scales, spatial patterns of variability were also observed. While no spatial effect 

was detected for the larvae in the water column, there was distinct spatial variation in 

settlement at the location level: some locations always showed higher settlement than 

others. These results suggest that, on scales of hundreds of meters to kilometers, larval 
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availability and settlement are very unpredictable in time and that differential delivery of 

larvae occurs from nearshore waters to the shore. 

Although the effect of the state of the moon (new or full) was not significant in either 

study, more settlers seemed to arrive on the shore during new moon. Wind direction did 

not correlate significantly with settlement. However, the dropping of offshore winds and 

the prevalence of onshore winds, which are characteristic of summer, may be linked to 

the start of settlement. Nevertheless, further investigations on tidal or lunar cycles and on 

the influence of wind on surface currents are required to clarify the effects of moon and 

wind on settlement. 
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Onshore marine habitats can be distinguished from offshore environments in terms of 

their physical stability. In particular, onshore benthic systems, including intertidal 

habitats, are exceptionally unstable, disturbed, and more subject to unpredictable physical 

changes than offshore environments (McKinney, 1986; Jablonski & Botjer, 1990). 

From an evolutionary point of view, since onshore environments are highly variable at 

different spatial and temporal scales, one would expect selection to produce a larger 

diversity of marine invertebrates in onshore than in offshore systems (Jablonski & Botjer, 

1990). If this was so, there should be higher concentrations of onshore genera and 

families, but this does not seem to apply to all invertebrate taxa (Jablonski and Botjer 

1990).  

Much debate about the evolution of marine invertebrate species has focused around the 

onshore-offshore pattern of species’ distribution. The suggestion is that many higher taxa 

originated in onshore environments, followed by offshore expansion with many onshore-

originated groups moving into offshore areas. Finally, some higher taxa that moved 

offshore would have permanently settled in the offshore environments (Jablonski & 

Botjer, 1990).  

Support for this theory comes from McKinney (1986). He suggests that more onshore 

species exhibit a progenetic reproductive strategy, in which organisms become sexually 

mature while still morphologically juvenile. The organisms exhibiting this strategy also 

exhibit shorter generation times and smaller body size. These characteristics make 

onshore organisms more prone to rapid evolution and more resistant to extinction than 

offshore ones (McKinney, 1986).  
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The onshore-offshore theory could then be applied to intertidal environments that, being 

part of the onshore systems, can also be considered to be highly unpredictable and 

variable, especially with respect to disturbance by physical factors. Species living 

intertidally could be better adapted to physical stresses. Indeed, globally, rocky shore 

habitats have been colonised and exploited by an extremely resistant, successful and 

ancient invertebrate group; the mytilid mussels (Berry, 1978; Suchanek, 1985). 

Mussels occupy a relatively narrow band in the intertidal. Physical stresses such as 

salinity, temperature, wave action, wave-generated storms and exposure to air limit the 

distribution of mussels intertidally and affect the mortality of adults considerably. For 

example, temperature and the risk of desiccation limit the distribution of mussels at the 

upper tidal levels (Suchanek, 1985). Subtidally, their distribution is often limited by 

predators, such as starfish, dogwhelks and subtidal fish (Seed, 1976; Suchanek, 1985; 

Dame, 1996). Also, the availability of suitable substrata can be a limiting factor for the 

distribution of mussels. Even within the narrow band that is inhabitable for mussels, they 

are subjected to the stresses induced by intra- and interspecific competition for space 

(Seed, 1976; Suchanek, 1985; Roughgarden et al., 1988; Dame, 1996).  

Despite the factors that delimit the distribution of the mytilid family, mussels are still 

among the dominant organisms on rocky shores and provide ideal habitats and refuges for 

many other invertebrate species (Harris et al., 1998). Indeed, mussel beds form a packed 

matrix that decreases the effect of wave action, temperature and sunlight (Suchanek, 

1985). Mussel assemblages increase the amount of habitat suitable for other organisms by 

modifying the substratum itself. In addition, mussel presence increases water retention 

and the deposition of feacal and pseudofeacal material (Suchanek, 1985; Seed et al., 
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2000). As a result, mussels can be considered to be “ physical ecosystem engineers” 

(Jones et al., 1997), able both to modify and to maintain the environment and to create the 

perfect habitat for many other species (Jones et al., 1997; Seed et al., 2000).  

The success of mussels can partly be found in their evolutionary history. Indeed, the 

neotenous retention of the post-larval byssus, used for attachment during metamorphosis, 

facilitated their expansion from soft sediments to hard substrata, by allowing a firm 

fastening of mussels to rocks (Suchanek, 1985; Seed et al., 2000). The heteromyarian 

shell shape, which is characteristic of mussels, also provides an ideal form for space 

occupancy and offers an excellent design for gregarious behaviour, for living in high 

densities and, again, for strong attachment to the substratum (Runnegar & Pojeta, 1985; 

Suchanek, 1985; Morton, 1992; Guinez & Castilla, 1999; Seed et al., 2000). 

Mussels have solved the problem of survival under the unstable and variable conditions 

typical of the intertidal zone by securing themselves to the rocks and by being gregarious. 

Mussel beds are extremely dynamic communities with levels of productivity that can be 

compared to those of tropical rain forests and kelp beds (Suchanek, 1985; in Seed et al., 

2000). The genus Mytilus is found in the cold waters of both the northern and southern 

hemispheres, while in the tropics and subtropics Mytilus is replaced by the genera Perna 

and Septifer (Suchanek, 1985; Seed et al., 2000). Perna perna is the dominant species on 

rocky shores of the south, east and west coasts of Africa (Berry, 1978; Van Erkom 

Schurink & Griffiths, 1990) and has become invasive in the Gulf of Mexico (Hicks et al., 

2001). 

The great success of mussels on the shore would appear to come in spite of the limitations 

of their reproductive strategies and larval histories. Mussels are highly sedentary and, in 
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contrast to barnacles, exhibit external fertilization. This involves an enormous amount of 

energy loss or wastage. With the release of sperm and eggs into the water, most gametes 

are lost and, even after external fertilization has occurred, almost 99% of zygotes die 

(Thorson, 1950; Bayne, 1976; Suchanek, 1985; Underwood & Fairweather, 1989; 

Levitan, 1995; Underwood & Keough, 2001). In addition, dispersal of larvae in the water 

column results in a further loss of potential recruits to the final adult populations 

(Underwood & Keough, 2001). 

The energetic investment required by mussels for their reproductive strategy appears to be 

very high. Although the total energy available to each individual is limited, mussels seem 

to spend lots of energy in three processes that involve great loss: external fertilization, 

long-lived larval dispersal and final settlement (Todd, 1985). However, life histories are 

generally phylogenetically constrained and can evolve only in certain directions. Also 

organisms can only select amongst a limited set of habitats. Therefore, the alternatives for 

habitat selection and reproductive strategy are not unlimited (Todd, 1985; Scheltema, 

1986; Begon et al., 1990).  

The colonisation of the highly disturbed rocky shore environment and reproduction 

through external fertilization, with its attendant risks, along with the associated risks of 

dispersal and settlement, may be the best evolutionary option that mussels have had. 

Classical models of life history selection, such as r-K selection and bet-hedging theories, 

refer to parameters like adult size, size and abundance of offspring, mortality and habitat 

stability. None of these models alone explains the life histories and reproductive 

strategies of mussels. Some of the characteristics exhibited by mussels match one model 

and some another (Calow, 1983; Todd, 1985; Begon et al., 1990; Halliday, 1993).  
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The r-model is characterised by small adult size, short life span, early reproductive 

maturity, semelparity and production of many small offspring whose survival depends on 

generally unpredictable environmental factors. The K-model is characterised by the 

production of few, high quality offspring with a high input of adult energy for parental 

care (Todd, 1985; Begon et al., 1990; Hallam, 1990; Halliday, 1993). 

The bet-hedging model is based on relative levels of mortality and on the predictability of 

adult and juvenile mortality. r-selected species are those in which adult mortality is more 

unpredictable than that of the juveniles. K-selected species are organisms for which 

juvenile mortality is more unpredictable (Todd, 1985). 

A third view emphasises habitat type and size of adult organisms. Size-beneficial habitats 

favour species in which large adult size is beneficial for the survival of the species 

(Begon et al., 1990; Lincoln et al., 1997). 

Mussel life histories show a mixture of patterns from all three of these models. The life 

span of these organisms is relatively long: Perna perna can live up to 5-6 years (McQuaid 

& Lindsay, 2000) and the adults can reach up to 20 cm in length (pers.obs.), though this is 

very rare. These characteristics agree with both size-beneficial habitat and K-models. The 

large adult size could be beneficial against predators as well as in intraspecific 

competition for space, and may help in resisting and surviving the severe conditions 

experienced on the shore (Begon et al., 1990). Individuals of P. perna can also be 

considered precocious as they can become sexually mature when they exceed only 20mm 

in length (Lasiak, 1986; Phillips, 1994; Ndizpa, 2002; Lawrie & McQuaid, in prep). This 

is a characteristic that agrees with size-neutral habitats and r-models. Also, in accord with 

the K-model is the fact that mussels are highly iteroparous and can reproduce frequently 
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(Berry, 1978; Ndizpa, 2002; Lawrie & McQuaid, in prep). Yet, they also produce huge 

quantities of gametes leading to the production of many, small pelagic larvae, a 

characteristic of an r-model species (Thorson, 1950). 

The habitat in which these mussels occur is highly unpredictable (distinctive of r-selected 

species for the bet hedging model and for the classic r-model), due to strong wave action, 

currents and the harsh conditions typical of the intertidal zone, especially in subtropical 

regions (Suchanek, 1985). Although the mortality of larvae is very high, it is more 

predictable than the mortality of adults, which are more subject to the unstable conditions 

of the shore (Thorson, 1950; Widdows, 1991). This last pattern is considered 

characteristic of K-selected species in the bet-hedging model. 

The production of large quantities of gametes is certainly a great advantage for mussels, 

considering the precarious conditions the pelagic larvae have to withstand during 

dispersal (Underwood & Keough, 2001). The small size of larvae could also be 

considered an advantage for the survival of the larva itself. In fact, it is believed that 

mussel larvae are transported like passive particles in the water column (McQuaid & 

Phillips, 2000). Their characteristic small size allows them to float and to be carried in the 

water instead of sinking to the sea bottom, away from rich food areas or settlement sites 

(Underwood & Keough, 2001). 

During dispersal, pelagic larvae can potentially be carried over large distances 

(Scheltema, 1986; Widdows, 1991; McQuaid & Phillips, 2000; Poulin et al., 2002). 

Larval transport in the water, associated with settlement on the shore of competent larvae, 

allows the colonisation of empty patches of rocks or even new areas and regions (Todd, 

1985; Underwood & Fairweather, 1989). Dispersal and settlement strongly shape 

 7



 

population structure and, therefore, affect the entire community associated with the adult 

beds (Gaines & Bertness, 1992; Morgan, 2001). 

Since larvae remain in the water column for quite some time (the average period for a 

mussel larva to become competent is between 3 and 4 weeks; Bayne, 1965), their 

transport and survival chances are exceptionally variable. In fact, the nature of dispersal 

and settlement can make larval and settler abundances particularly variable, as they are 

strongly influenced by unpredictable environmental conditions (Underwood & 

Fairweather, 1989; Gaines and Bertness, 1992; Bertness et al., 1996; Eckman, 1996). 

Thus, the availability and settlement of mussel larvae are highly variable because of 

mussel reproductive strategies and also because of the general characteristics of the 

environment in which the larvae are found. Variability of larval availability and of 

settlement intensifies even further when different spatial and temporal scales of the 

environmental and biological components are considered (Gaines & Bertness, 1993; 

Jenkins et al., 2000; Morgan, 2001; Drouin et al., 2002). In particular, those abiotic 

factors that influence the transport and delivery of larvae can vary considerably, both at 

fine and large temporal and spatial scales. Of these factors, currents are among the most 

important (Eckman, 1996). The variability of currents changes dramatically at different 

spatial and temporal scales and, therefore, so too will the transport and delivery of larvae 

onto the shore (Pineda, 2000). For example, the transport and survival of larvae is mainly 

determined by large offshore oceanographic currents, then, closer to the shore, by finer-

scale, more local currents and, finally, by the microhydrodynamics typical of inshore 

coastal areas, which characterise the movement of water around rocks and crevices 

(Underwood & Fairweather, 1989; Pineda, 2000). 
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On the east coast of South Africa, the warm Agulhas current is the major offshore current 

(Hunter, 1981; Goschen & Schumann 1990; Goschen & Schumann, 1994). It flows 

parallel to the coast at a maximum speed of 2.5 m*sec-1, roughly following the 200m 

isobath and diverging from the coast towards the south-west. Approaching Port Elizabeth 

it flows approximately 70km offshore (Fig.1, chapter 2), but it can show dramatic 

onshore/offshore meanders, on occasions coming virtually into the intertidal (Goschen & 

Schumann, 1990; Goschen & Schumann, 1994). This current is likely to influence the 

survival and settlement of mussel larvae dramatically as it undergoes a major offshore 

retroflection south of South Africa (Goschen & Schumann 1990) and larvae taken up by 

the Agulhas current would have virtually no chance of returning to the shore. 

The Agulhas is an oceanically forced western boundary current. Inshore currents on this 

coast (between the Agulhas front and the coastline) are wind forced, vary at different 

spatial scales and are affected by factors acting at both large and fine temporal scales. For 

example, current speed and direction can vary on an hourly, daily, tidal and seasonal 

basis. The different temporal scales on which currents can change are greatly influenced 

by the action of the wind. It has often been observed that the direction and speed of the 

main coastal winds directly influence inshore currents, and consequently, the transport 

and delivery of pelagic invertebrate larvae (Pineda, 1991; Gaines and Bertness, 1992; 

Bertness et al., 1996; McQuaid & Phillips, 2000; Poulin et al., 2002). The impact of wind 

action on water decreases with increasing water depth, and therefore the maximum and 

most direct effect of this environmental feature occurs at the water surface (Field et al., 

1980).  
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Currents, and the other physical factors influencing water movement at different spatial 

and temporal scales, are closely related to the transport of invertebrate larvae and to their 

delivery to the shore. Seasonal and geographical differences in the reproductive strategies 

selected by many sedentary benthic invertebrates also influence larval dispersal and 

settlement at different spatial and temporal scales. These physical and biological factors 

act jointly to enhance variability in the structuring and maintenance of adult populations 

and, therefore, the intertidal community as a whole (Connell, 1985; Lewin, 1986; Young, 

1987; Underwood & Fairweather, 1989; Minchinton & Scheibling, 1991; Grosberg & 

Levitan, 1992; Alexander & Roughgarden, 1996; Pulfrich, 1996; Morgan, 2001; 

Underwood & Keough, 2001; Jeffery, 2003). 

However, biological processes alone, such as larval supply and settlement, can also be 

considered as key aspects for an understanding of population dynamics. In particular, 

settlement can be referred to as the bridging factor, the connecting path between two 

crucial phases of many sedentary marine invertebrates’ life histories: dispersal and 

permanent recruitment to adult populations. Hence, this study focused on the variability 

of larval supply and settlement of mussels at different spatial and temporal scales, with 

specific attention to possible coupling between these two processes. 

 

Structure of the thesis 

This thesis is divided into 6 main chapters. 

Chapter 1 forms the general introduction, highlighting the causes of variability in the 

availability of mussel larvae and their settlement. Chapter 2 discusses spatial and 

temporal variability in the availability of Perna perna larvae, monitored in the water 
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column at two sites along the south east coast of South Africa. Chapter 3 deals with 

spatial and temporal variability of Perna settlement, measured at the same sites. Chapter 

4 considers possible relationships between larval availability and settlement of Perna 

perna. Here the data presented in Chapters 2 and 3 are combined and analysed together. 

Chapter 5 examines the particular effect of one abiotic factor, the wind, on the transport 

and delivery of Perna perna larvae onto the shore. The settlement data analysed during 

this study are the same as those collected for the survey in Chapter 3. Finally, Chapter 6 

concludes the thesis with a general discussion. 
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Chapter 2  

Nearshore larval availability of Perna perna on the south coast of South 

Africa: spatial and temporal variability 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

“All truths are easy to understand once they are discovered;  
                                                  the point is to discover them” 
        Galileo Galilei 
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Introduction 

Intertidal organisms with external fertilization produce pelagic larvae that are forced to 

disperse in the water column. The amount of time that larvae spend in the water before 

they come back on the shore varies, depending on the species, on the larval stages 

involved and on the duration of each stage (Widdows, 1991). However, regardless of the 

duration of the typical larval period, some larvae can also delay metamorphosis and 

therefore the time of arrival on the shore, if conditions are not optimal for the larvae to 

settle (Thorson, 1950; Bayne, 1965; Sprung, 1984; Lutz & Kennish, 1992; Seed & 

Suchanek, 1992; Marshall et al., 2003). Of course, spending longer in the water could 

increase the risk of mortality due to predation (Widdows, 1991), even though it has been 

recently suggested that pelagic larvae undergo little planktonic predation (Baldwin et al., 

1995; Tamburri & Zimmer-Faust, 1996; Johnson & Shanks, 1997; Johnson & Brink, 

1998; Johnson, 1999; Johnson & Shanks, 2003).  

The postponement of settlement can be induced by cues that influence the behaviour of 

larvae. For example, some larvae can achieve postponement by actively controlling their 

position in the water column (Mileikovsky, 1973; Norkko et al., 2001; Satumanatpan & 

Keough, 2001) and thus, the timing of arrival on the substratum. It has been observed that 

environmental cues drive the settlement of megalops crab larvae to the substrata in 

estuaries, after fertilization of eggs has occurred in open coastal waters. Different cues 

stimulate an endogenous response resulting in active searching for the substratum. In 

general, the nature of these cues is not always known, but in a few cases it has been 

shown that re-entering an estuary is triggered by a specific phase of the tide or cues from 
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the light cycle (Paula et al., 2001; Ross, 2001; Tankersley et al., 2002; Forward et al., 

2003). 

Tankersley et al. (2002) have observed that, at night, megalops larvae keep swimming 

during flooding tides and settle just before low tide. In this case, the behavioural response 

is triggered by changes in salinity. However, light also inhibits larval transport: more 

larvae arrive in the estuary during morning than evening low tides.  

In general, offshore dispersal of larvae is a very complex and variable process. It is 

unclear from which adult populations larvae originate, and it seems highly improbable 

that they will settle back into the population from which gametes were spawned 

(Minchinton & Scheibling, 1991), especially if the dispersal phase is relatively long 

(Graham & Sebens, 1996). In fact, larvae can potentially be transported over large 

distances, both offshore and along the coast (Van Dover et al., 2001; Widdows, 1991; 

Poulin et al., 2002). Therefore, it is extremely difficult to follow the dispersal phases of 

marine invertebrates. However, although difficult, it is important to assess dispersal in a 

quantitative way, in order to understand population dynamics and model predictions of 

final population sizes (Wiens et al., 1993; Eckman, 1996; Norkko et al. 2001). The 

present study has addressed mussel dispersal without considering the potential offshore 

spreading of larvae, trying instead to estimate the abundances of mussel larvae just off the 

coast, in nearshore waters. In fact, it is in the inshore waters that larvae are likely to be 

found in higher densities (Pulfrich, 1997). Thus, this study was focused on the abundance 

of larvae that are available for settlement, in other words, close to the shore and to 

potential settlement sites.  
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However, the availability of larvae in inshore waters is closely related to dispersal, 

therefore those processes that affect dispersal can influence the abundance of larvae too. 

As already mentioned, larval behaviour can change the position of organisms in the water 

and, consequently, the availability of larvae. The output of gametes can also be variable 

and can affect the spatial distribution of larvae in the water (Hurlbut, 1991; Jenkins et al., 

1999) and finally determine spatial variability of sedentary organisms (Reed et al., 2000). 

Indeed, gamete availability may vary, depending on the seasonality of the reproductive 

cycle, and can change if gametes are released in different amounts in different areas, due 

to the patchy distribution of adults on the shore. Physical parameters, such as 

hydrodynamics, water temperature, internal waves and tides, geography and topography 

can also affect the abundance and transport of larvae in the water (Gaines et al., 1985; 

Roughgarden et al., 1987; Pineda, 1991; Gaines & Bertness, 1992; Bertness et al., 1996; 

Jenkins et al., 1999; Drouin et al., 2002; Poulin et al., 2002). All these factors operate on 

larval availability at different spatial and temporal scales (Eckman, 1996; Stoner & Davis, 

1997; Dobretsov & Miron, 2001; Poulin et al., 2002). In fact, the variability of larval 

abundance can be influenced by fine or large-scale spatial patterns of currents: large-scale 

oceanographic currents or fine-scale local hydrodynamics (Stoner & Davis, 1997; 

Satumanatpan & Keough, 2001). It also happens that different quantities of larvae are 

found at different geographic sites, hundreds of kilometers apart, or even at different 

positions on the same shore, separated by distances of only hundreds of meters 

(Satumanatpan & Keough, 2001). Ross (2001) showed that barnacle larvae from a 

temperate mangrove forest are transported in a passive way at large spatial scales and that 

their distribution is influenced by hydrodynamics. However, it has been suggested that, at 
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finer spatial scales, marine larval settlement can be driven by active larval behaviour, 

which can influence habitat selection, settlement and the final distribution of adult 

organisms (Meadows & Campbell, 1972; Strathman et al., 1981). 

In addition to spatial variability, temporal variation should also be considered when 

exploring larval availability in the water column (Beukema et al., 2001; Lipcius & 

Stockhausen, 2002). In fact, in such a variable system, the abundance of larvae collected 

from the water column at a particular place, can change dramatically with time (Pulfrich, 

1997; Stoner & Davis, 1997; Ross, 2001; Poulin et al., 2002; pers obs). Larval abundance 

can differ on very fine temporal scales. For example, patches of larvae can be found at 

one place at a specific time, but not seconds or minutes later (pers. obs.). But also, 

availability of larvae can change on a seasonal scale: because of a seasonal reproductive 

cycle, or even seasonal patterns of water currents (Van Dover et al., 2001). 

Because of the extraordinary variability and patchiness of organisms in this system 

(McQuaid & Phillips, 2000; Natunewicz & Epifanio, 2001; Zeidberg & Hammer, 2002), 

not many studies have examined larval dispersal and availability in a quantitative way 

(Norkko et al. 2001). The present study has tried to quantify larvae of Perna perna in the 

water column and is one of very few studies to inspect larval availability in nearshore 

waters, i.e. just behind the surf zone. In fact, most studies on zooplankton abundance, 

even those done in coastal waters, have traditionally considered sampling areas that are at 

least kilometers offshore.  

Finally, there are very few investigations that have simultaneously considered spatial and 

temporal variability in the abundance of zooplankton in the water, especially abundances 
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of mussel larvae. The present survey examines the variability of Perna perna abundance, 

considering both spatial and temporal variability at different scales. 

Materials & Methods 

Study sites: The study was conducted between March 2000 and April 2001 at two sites, 

chosen near Kenton-on-Sea (33° 41'S, 26° 40'E), on the south coast of South Africa (Fig. 

1). The sites were in Kenton: Middle Beach and High Rocks, which lies about 3km east 

of Middle Beach (Figs 2 & 3). 
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         Fig.1 Map of South Africa and study area. 
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Fig. 2 Sampling site: Middle Beach in Kenton (KE). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 Sampling site: High Rocks (HR). 
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Sampling was conducted at offshore sites that were opposite intertidal sites on rocky 

shores formed of Aeolian dune rock and exposed to similar levels of wave action. Wave 

exposure was estimated during each of the four seasons by measuring weight loss of 3 

cement balls attached to the rocks at each intertidal location for two days. Larval 

availability in the nearshore water column was investigated, approximately 500 meters 

offshore, at KE (Kenton) and HR (High Rocks), using a nested approach. At each site, 

three locations were identified, about three hundred meters apart (Fig. 4). 

Sampling at the offshore locations was done just behind the surf zone. The distance from 

the shore changed with tide level and sea conditions, but was always within 500 meters of 

the shore.  
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Fig. 4 Experimental design for the offshore larval availability study. One site only (detailed 
description in text). 
 

Larval availability: Abundance of Perna perna larvae in the water column was examined 

by collecting plankton samples just behind the surf zone. Due to possible larval 

stratification within the water column (McQuaid & Phillips, 2000), sampling was done by 
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means of vertical hauls using a plankton net. The net had a mesh of 80µm and a mouth of 

30X30cm; it was pulled from approximately 1m above the seabed (to minimise sand 

collection) to the surface at a rate of about 0.5m*s- 1. The depth of the hauls ranged 

between 7 and 10 meters. The volume of water filtered was calculated from the area of 

the mouth of the net and the depth of the haul. 

At each location, three replicate plankton samples were taken (Fig. 4) and wind direction, 

speed and time of collection were recorded. The position of each location was determined 

during every sampling event using GPS (Global Positioning System). 

The samples were preserved in a solution of 40% formalin and 60% sea water and 

returned to the laboratory for analysis. Samples often contained considerable amounts of 

coarse sand, with particles approximately the same size as larvae. To make the 

identification of larvae easier (Garland & Zimmer, 2002), samples were stained with a 

few drops of 0.38% Rose Bengal (Acid red, C.I.45440) in 95% alcohol, which stains only 

organic material. The contents of each sample were examined under a dissecting 

microscope and Perna perna larvae were identified (Fig. 5), counted and measured under 

25X magnification to the nearest 0.05mm using an eyepiece graticule (1mm = 25units). 

All measurements were transformed to µm for analysis. Since most of the time the 

number of larvae did not vary amongst replicates, only two out of the three replicates 

were processed and used for statistical analysis. 
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                         Fig.5 Perna perna larva collected from the water column  

 

Periodicity: Temporal variation in larval abundance was inspected at different scales, 

from fine to relatively coarse. 

There were three main studies: 1) seasonal; 2) lunar; 3) daily (two separate studies in 

2000 and 2001). 

1) Seasonal study. Large-scale temporal variation was examined so that information on 

abundance of larvae due to seasonality could be obtained. For this purpose, sampling 

continued throughout the year from March 2000 to April 2001 (14 months), with a total 

of 23 plankton collections. The reduced number of sampling (23 collections instead of 28) 

was due to bad weather conditions, when plankton sampling could not be performed. 

During this time larval availability was examined by sampling fortnightly, as close as 

possible to spring tide. Thus, plankton sampling was done for 14 consecutive months, 

twice a month: one collection was at new moon spring tide and the other at full moon 

spring tide. 
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2) Lunar study. In order to monitor the possible effect of lunar phase on larval 

availability, a subset of data from the seasonal study was analysed. Because of missing 

samples, for the lunar study, the data set needed to be balanced and reduced. Therefore, 

fewer sampling events (16) were used here than for the seasonal study. 

3) Daily 2000 and 2001 studies. In order to detect fine-scale temporal variability, daily 

plankton collection was performed during two independent periods: the first from 20th of 

March to 10th of April 2000 (21 days), the second from 6th of February to 11th of March 

2001 (34 days). From previous studies, February, March and April (late austral summer) 

are expected to be months of high larval availability and settlement for Perna perna 

(Lawrie & McQuaid, in prep). During these two cycles, plankton collection was carried 

out every day except when sea conditions were too dangerous (approximately 25% of 

total number of days). 

Statistical analysis. All statistical analyses were performed using the software package 

Statistica 6. All data were analysed using parametric tests and since the experimental 

design was balanced, analysis of variance (ANOVA) was chosen to test the hypotheses. 

Three separate analyses were performed to investigate the different temporal scales of 

variability (seasonal, lunar and daily). The data set varied for each analysis, therefore 

independent analyses for each temporal scale could be run. 

Mixed model, nested ANOVA was used to examine scales of variation due to temporal 

and spatial factors. All independent variables and the possible interactions among factors 

were considered to assign variability. Location was nested within site and crossed by 

time. The spatial factors were treated as random, since the chosen sites were “ecological 

replicates” of the nearshore area and were close enough to allow simultaneous collection 
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of data. Likewise location was treated as a random factor, nested within site (Zar, 1984). 

In the seasonal study, the temporal factor, date, was treated as fixed. This choice was 

made because, although some sampling collections were missed due to bad weather 

conditions, sampling was initially planned for regular fortnightly collections, which 

would have allowed the detection of variability of larval availability due to seasonal 

differences. In the two daily studies (daily 2000 and daily 2001), the temporal factor day 

was treated as random. The daily studies were important to investigate variation in larval 

abundance at fine temporal scales (day), but the actual day of sampling was of no interest. 

An additional analysis was run to look at the effects of the phase of the moon (full or new 

moon) on the availability of Perna larvae in the water. In this case, the factor moon was 

treated as fixed and crossed by date, site and location (nested in site). The ANOVA tables 

for random and mixed models were made manually following Zar (1984) in order to 

calculate the degrees of freedom, mean squares and F-ratios. 

All types of interactions for the different studies are summarised in Table 1. Normality 

was examined using the Kolmogorov-Smirnov test and homogeneity of variances 

determined using Cochran’s test. When the homogeneity assumptions could not be 

satisfied, the dependent variable was logarithmically transformed (Winer, 1971; Lindman, 

1974; Sokal & Rohlf, 1981; Zar, 1984; Underwood, 1997). For the larval availability 

study no post-hoc test was run because the significant interactions observed in most of the 

Anova tables would have made the post-hoc tables difficult to interpret. 
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Table 1 Summary of analyses of variance used for the different studies on availability of Perna 
perna larvae in the water. Independent variables, interactions within factors, type of effect and 
transformation choice are listed for each study. 
 
 
 

 

ANALYSIS EFFECT 
(Random/Fixed) TRANSFORMATION 

1) Seasonal study: variation of larval 
abundance due to season  Log transformation, Log (X+1) 

Site                                                                     
Location (Site) 
Date 
Date *Site 
Date *Location (Site) 

Random 
Random 

Fixed 
Random 
Random 

 

2) Lunar study: variation of larval 
abundance due to lunar phase   Log transformation, Log (X+1) 

Site                                                                     
Location (Site) 
Date 
Moon  
Date * Moon 
Date *Site 
Moon*Site 
Date *Location (Site) 
Moon*Location (Site) 
Date *Moon*Site 
Date *Moon*Location (Site) 

Random 
Random 

Fixed 
Fixed 
Fixed 

Random 
Random 
Random 
Random 
Random 
Random 

 

3) Daily study, analysed separately for 2000 
& 2001: variation of larval abundance due to 
day of collection  

 2000-Log transformation, Log (X+1) 
2001-NOT transformed 

Site                                                                     
Location (Site) 
Day 
Day*Site 
Day* Location (Site) 

Random 
Random 
Random 
Random 
Random 
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Results 

The size of Perna perna collected 500 meters offshore varied between 200µm and 1.3mm 

(one individual). However, the size range was heavily dominated (99.87%) by the 200 – 

400µm size class (Fig.6). This was the class used for the analysis of larval abundance in 

the water column at all three temporal scales: seasonal, lunar and daily. This size class 

almost overlapped the size range of animals collected during the settlement study and was 

therefore considered to represent the size of competent larvae, still in the water column, 

but ready to settle on intertidal substrata. In addition, in most cases, the morphology of 

these larvae was very similar to that of individuals collected during the settlement study 

(see chapter 3). 
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1) Seasonal study 

The water column was sampled twice a month, around spring tides, for 14 months from 

March 2000 to April 2001. Seasonal collections showed peaks in larval distribution at the 

beginning of the sampling period, on very specific occasions: the first two dates of 

collection (20th of March and 3rd of April 2000). For the rest of the study, larvae were 

extremely rare. This was observed at both sites, High Rocks (HR) and Kenton (KE) (Fig. 

7). In particular, larvae were abundant at HR on the first sampling day, 20th of March, 

reaching mean values up to 307.14 ± 4.51 larvae per cubic meter at HR location “D” (HR 

D) (Fig. 7). 

Variances of all the data were found to be homogeneous after logarithmic transformation 

using Cochran’s test for homogeneity (p > 0.05). The ANOVA table for the seasonal 

study showed that neither site nor location, nested within site, affected the variability of 

larval abundance significantly (p > 0.05 in both cases; Table 2). Nevertheless, there were 

strong significant interactions between date and location and date and site (p < 0.00001). 

Temporal patterns of variability in larval abundance differed drastically among different 

sites and different locations. Although site itself did not have a significant effect on the 

number of larvae in the water, histograms of cumulated larvae per site and location 

(Figs.8 & 9) indicate obvious differences between HR and KE, with total values at HR 

more than three times greater than at KE. Possibly, the effect of site was masked by the 

low numbers of larvae collected throughout the rest of the study and the high temporal 

variability (effect of date, p < 0.00001). However, when an ANOVA was run only on 

those dates with high numbers of larvae, site did not have a significant effect. 



    

Finally, even though the main factor location did not have a significant effect on the 

abundance of larvae, the histograms of total cumulated larvae per location showed that 

total numbers of larvae differed strongly between locations. HR D and HR E had total 

values an order of magnitude higher than the others (Fig.9). 

 
Table 2 ANOVA for seasonal study. df = degrees of freedom; MS = Mean Square; F = F-Ratio; 
p = probability value; n.s. = p > 0.05; **** = p < 0.00001 
 

 df MS F p 

Date 22 9.07101 49.83076 **** 
Site 1 0.49264 5.38565 n.s. 
Location (Site) 4 0.09147 0.502 n.s. 
Date*Site 22 1.63829 3.82697 **** 
Date*Location 88 0.42809 2.35169 **** 
Residual 138 0.18204   
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    Fig. 7 Seasonal larval availability at KE (locations A, B, C) and HR (locations D, E, F).   
     Points indicate mean values and error bars show standard errors (SE). 
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2) Lunar study 

The data used for this study were logarithmically transformed and homogeneity of 

transformed data was confirmed by with Cochran’s test (p > 0.05). The lunar study was 

performed by sampling the water column at new and full moon for 14 months, to 

investigate the possible influence of the phase of the moon on larval availability. This was 

difficult to assess because there were only two events when larvae were found in the 

samples and each event showed a peak at only one of the two sites. On 20th of March 

2000, a full moon period, many larvae were collected at HR (Fig. 10). On the other hand, 

the 3rd of April 2000 was a new moon period and this was the day when most larvae were 

found at KE (Fig. 11). 

The results of the ANOVA (Table 3) showed that date significantly influenced the 

variability of larvae in the water (p < 0.00001). Moon, the two spatial factors, site and 

location and the interaction between date and site did not show any significant effect on 

the abundance of Perna (p > 0.05.). Two other significant sources of variability were the 

interactions of the temporal variables, moon and date, with site and also with location (p 

< 0.00001, for both interactions). Thus, the effect of the moon differed among dates and 

locations and also between sites (Figs. 10 & 11). 

The interaction between moon and site also showed a significant effect on the variability 

of larvae in the water (p < 0.05). 
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Table 3 ANOVA for lunar study. df = degrees of freedom; MS = Mean Square; F =   
 F- Ratio; p = probability value; n.s. = p > 0.05; * = p < 0.05; **** = p < 0.00001;  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 df MS F p 

Date 7 27.21100 599.452 **** 
Moon 1 0.71348 0.136 n.s. 
Site 1 0.01748 0.156 n.s. 
Location (Site) 4 0.11219 0.618 n.s. 
Date*Moon 7 0.31761 0.0775 n.s. 
Date*Site 7 0.04539 0.2510 n.s. 
Date*Location 28 0.18087 0.9957 n.s. 
Moon*Site 1 5.24715 18.7296 * 
Moon*Location 4 0.28015 1.5423 n.s. 
Date*Moon*Site 7 4.09789 7.2726 **** 
Date*Moon*Location 28 0.56347 3.1021 **** 
Error 96 0.18164   
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       Fig. 10 Lunar larval availability at HR. Bars indicate means at full and new moon. Error bars   
       show standard errors (SE) 
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     Fig. 11 Lunar larval availability at each location at KE. Bars indicate means at full and new    
      moon. Error bars show standard errors (SE). 
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3) Daily study, 2000 

Fine temporal scale variability of larvae in the water was investigated through two 

sessions of daily sampling, in 2000 and 2001. 

The data from the 2000 study were logarithmically transformed and homogeneity of 

transformation was confirmed using Cochran’s test (p > 0.05). 

The numbers of larvae found in the water during the 2000 daily sampling (20th March to 

10th April) varied considerably from one day to the next, at both sites (Fig. 12). 

Two-way nested ANOVA showed that the variation in larval abundance from daily 

collections was significantly affected by three factors: day, the interaction between day 

and site and the interaction between day and location (p < 0.00001 in all three cases). The 

other main factors, location nested in site and site alone did not have significant effects on 

larval distribution (p > 0.05; Table 4). Again, the lack of site and location effect was 

possibly due to very low values on most days. Time proved again to be an important 

factor, influencing the availability of larvae in the water column on a daily basis; in fact, 

the number of larvae could change drastically, often from one day to the next, at both 

sites and some locations. There were also clear differences in larval abundance between 

one site and the other on the same sampling day and between one location and another at 

the same site (Fig. 12). Hence, the significant interaction between day and site and also 

between day and location (p < 0.00001). For example on the 20th of March and on the 24th 

of March on average, many more larvae were collected at HR rather than at KE (Fig. 12). 

Differences in larval availability between sites and locations are also represented in two 

cumulative graphs for site and location (Figs. 13 & 14). 
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Table 4 ANOVA for daily 2000 study. df = degrees of freedom; MS = Mean Square; F = F-
Ratio; p = probability value; n.s. = p > 0.05; **** = p < 0.00001 

 
 

 df MS F p 

Day 16 15.7708 4.7789 **** 
Site 1 2.3344 1.7858 n.s. 
Location (Site) 4 1.3072 0.3939 n.s. 
Day*Site 16 3.3001 3.4414 **** 
Day*Location 64 0.9589 2.4113 **** 
Error 102 0.3977   

 
 
 
 
 
 
 
 
 
The interaction between day and location was significant. However, all days when the 

number of larvae was high, showed peaks at all locations simultaneously, with the single 

exception of the 24 March 2000 at KE. Thus, the interaction between day and location 

reflects the weak spike on 24 March and also the fact that some locations showed strong 

peaks, while some weak and others none on the same day. 
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Fig. 12 Daily 2000 larval availability at KE (locations A, B, C) and HR (locations D, E, F).  
Points indicate mean values and error bars show standard errors (SE).
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Fig. 13 Larval availability for Daily 2000 study - cumulated means for each site (HR and KE). Error bars show standard errors (SE).
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 Fig. 14 Larval availability for Daily 2000 study at HR and KE - cumulated means for each location. Error bars show standard  
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3’) Daily study, 2001 

Cochran’s test indicated that the raw data exhibited homogeneity of variances (p >0.05) 

and thus the daily 2001 data were analysed without transformation. 

The processing of samples collected during the 2001 daily collection, from 7th February 

to 9th March, revealed generally small numbers of larvae at both sites and all locations. 

However, there was extreme variability in abundances on a daily scale (Fig. 15). For 

instance, on the 20th and 25th of February, there were peaks at HR, but the numbers 

dropped to zero on each of the following days (Fig. 15). The same scenario occurred at 

KE, with larvae showing peaks on several occasions, with numbers falling to zero on the 

subsequent days (Fig. 15). Differences in larval availability between sites and amongst 

locations are represented in two cumulative graphs for site and location (Figs. 16 & 17). 

In contrast to the results obtained from the 2000 daily study, the only factor that showed a 

significant effect in the 2001 analysis was day. The factors site, location nested within 

site, and all possible interactions did not show significant effects (p > 0.05) (Table 5). 

 
 
Table 5 ANOVA for daily 2001 study. df = degrees of freedom; MS = Mean Square; F = F-
Ratio; p = probability value; n.s. = p > 0.05; **** = p < 0.00001 

 
 

 df MS F p 

Day 21 13.32968 4.2980 **** 
Site 1 0.36292 0.0798 n.s. 
Location (Site) 4 4.54464 1.4653 n.s. 
Day*Site 21 3.10130 0.8964 n.s. 
Day*Location 84 3.45956 1.2855 n.s. 
Error 132 2.69105   
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Fig. 15 Daily 2001 larval availability at KE (locations A, B, C) and HR (locations D, E, F).      
Points indicate mean values and error bars show standard errors (SE).
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Fig. 16 Larval availability for Daily 2001 study - cumulated means for each site (HR and KE). Error bars show standard errors (SE).
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Fig. 17 Larval availability for Daily 2001 study at HR and KE - cumulated means for each location. Error bars show standard  
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Summmary of larval availability results 

Time was the only factor that affected the variability of larvae in the water column, in all 

studies. Interactions between time and site also significantly affected the variability of 

larvae in the water column on seasonal and daily (2000 only) scales. Finally, the 

interactions between date, moon and site and the interaction between date, moon and 

location were also very strong components of variability for the lunar study. The main 

factors site, location and moon did not have significant effects at any temporal scale. All 

the main sources of variation for larval abundance in the nearshore waters are 

summarised in Table 6 and will be discussed in detail in the following section. 

In general, none of the spatial variables alone, site nor location, had a significant effect in 

any of the analyses, but both interacted significantly with the temporal components in 

most analyses. This indicates that temporal patterns of larval abundances in the water 

column differed between site and amongst locations at all the three scales examined 

(season, moon, day), with no prevailing geographical or spatial effect. 
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Table 6 Larval availability. Summary of effects of the independent variables and interactions in 
different studies of larval abundance using nested analysis of variance. NS= not significant; **** 
= p < 0.00001; ** = p < 0.05;  -- = not applicable. 
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STUDY 

LUNAR 
STUDY 

DAILY 
2000 
STUDY

DAILY 
2001 
STUDY 

Site 
Location 
Time 
Time*Site 
Time*Location 
Moon 
Time*Moon 
Moon*Site 
Moon*Location 
Time*Moon*Site 
Time*Moon*Location
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Discussion 

 

Size and abundance 

Bayne (1964) proposed a theory of primary-secondary settlement of mussels, suggesting 

that initial settlement occurs on filamentous algae, followed, after a period of growth, by 

detachment and secondary occupation of the adult mussel beds. This theory has been 

supported by several studies (Eyster & Pechenik, 1987; Pulfrich, 1996). However, others 

have refuted it (Petersen, 1984; McGrath et al., 1988; Lasiak & Barnard, 1995), finding 

mussel larvae able to settle on filamentous algae, hard substrata and adult mussel beds. In 

all cases the focus of study has been settlement only, with little attention being given to 

the size of larvae while still in the water column (Kautsky, 1982; Caceres-Martinez & 

Figueras, 1998). During the present study, almost all larvae collected from the water 

column had a maximum shell length ranging from 200 to 400µm. Larger mussels (> 

400µm) occurred, but were extremely rare (0.13% of total). The 200 - 400µm size class 

corresponds approximately (Caceres-Martinez & Figueras, 1998; Phillips & Gaines, 

2002) to the size of animals ready to settle on the rocks and the absence of bigger larvae 

shows that very few potential secondary settlers were collected from the water column 

during this study. 

Studies of the abundance of planktonic stages of different intertidal invertebrates have 

used different techniques, including bongo nets (bivalves: Pulfrich, 1997), pumps 

(barnacles: Miron et al., 1995; Satumanatpan & Keough, 2001; ascidians: Hurlbut, 1991; 

bivalves: Caceres-Martinez & Figueras, 1998), towing (bivalves: Stoner & Davis, 1997; 



  

barnacles: Drouin et al., 2002; Pineda et al., 2002), vertical hauls (bivalves: McQuaid & 

Phillips, 2000; Dobretsov & Miron, 2001; Lawrie & McQuaid, in prep.) or traps 

specifically designed for collections integrated in time and space (bivalves: Dobretsov & 

Miron, 2001).  

Integration of sampling, over the water column for example, could reduce the method 

sensitivity (Miron et al., 1995), so the sampling procedure must be designed carefully 

with an understanding of how larvae are distributed. In fact, depending on the position of 

larvae in the column, one could make predictions on settlement of larvae in the benthos 

(Miron et al., 1995). If larvae usually stay at the surface, then settlement follows tidal 

oscillations; if larvae are uniformly distributed in the water column, settlement decreases 

from low to high shore, depending on the immersion time. Finally, if larvae are usually at 

or near the seabed, maximum settlement should occur on the low shore (Miron et al., 

1995). McQuaid & Phillips (2000) found that mussel larvae, collected from the same area 

as the present study, are distributed randomly throughout the water column. Therefore, 

bottom to surface hauls seemed to be an effective and simple technique for a realistic 

estimation of the abundance of mussel larvae in nearshore waters. The bottom to surface 

sampling method excludes the possibility that some larvae could have been missed due to 

stratification as this procedure integrates sampling through the whole water column.  

Although fecundity was not investigated during this study, Jenkins et al. (2000) suggest 

that fecundity in barnacles does not influence recruitment to the final adult population: it 

seems rather that it is variability during larval stages in the water that will lead to either 

poor or good recruitment. Variability in abundance of larvae in the water will change at 

large and fine temporal and spatial scales. One of the possible reasons for such variability 
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could be the irregularity of the phytoplankton availability; phytoplankton forms the main 

food for larvae during the planktonic stage (Jenkins et al., 2000).  

 

Spatial variability 

Larval supply of marine invertebrates living intertidally can be influenced by adult 

abundance, hydrodynamics and larval behaviour (Hurlbut, 1991). Spatial variability in the 

abundance of planktonic larval stages of benthic organisms has largely been studied in 

order to understand the processes and the scales that affect their distribution in the water 

and their arrival on the shore (Pineda, 1991; McQuaid & Phillips, 2000; Dobretsov & 

Miron, 2001; Natunewicz & Epifanio, 2001; Norkko et al., 2001). Larval supply and, in 

some cases, behaviour, vary greatly depending on the species examined, on the 

geographic position of the study sites and on the different spatial scales examined 

(Satumanatpan & Keough, 2001). For example Satumanatpan & Keough (2001) believe 

that passive transport, due to oceanographic processes, regulates the distribution of 

barnacle larvae at large scales, while active behaviour would influence their movement at 

finer scales, when they are closer to the shore. Ross (2001) also describes the same type 

of effect at large and fine spatial scales on the distribution of barnacle larvae in a 

mangrove forest; however, the ability of larvae to influence their position by active 

behaviour is much greater in a calm habitat like mangroves, than on wave-exposed rocky 

shores. 
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Modeling of larval fish distribution also suggests the importance of passive transport due 

to hydrodynamics, with passive transport being enhanced by strong wind action (Jenkins 

et al., 1999). 

The results of the present study show that abundance of larvae in the water column does 

not show strong spatial effects at the spatial scales examined during this study. The 

effects of site (km scale) and location (100m scale) on larval abundance were not 

significant. Although the number of larvae collected at HR was larger than that sampled 

at KE, and despite the fact that some locations presented more larvae than others, the 

signal provided by the spatial variables was not strong enough to give a significant spatial 

effect of space in the ANOVA. 

This seems to support the idea that while larvae are still in the water, the processes that 

affect the variability of their distribution operate on scales larger than those investigated, 

while micro-hydrodynamics influence settlement (Pineda, 2000).. In the case of the 

present study, currents may affect the distribution of larvae on scales larger than a few 

kilometers. 

Nevertheless, the spatial signal alone could have been masked for two main reasons. First, 

numbers of larvae were generally very low, frequently zero, and this could have hidden 

the effect of the spatial factors alone. Second, the spatial effect could have been expressed 

through the strong interactions between spatial and temporal variables. In fact, temporal 

patterns in larval abundance differed between sites and amongst locations.  

Patchiness in the distribution of zooplankton in the water column has been attributed to 

several physical and biological processes such as water temperature, salinity, internal and 

interaction between prey and predators (Stoner & Davis, 1997; Natunewicz & Epifanio, 
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2001). Vertical migration would probably depend on light, gravity or food concentration; 

these are all factors that can change over spatio-temporal scales that are relevant to this 

study (Dobretsov & Miron, 2001). Some hypotheses maintain that there are offshore 

regions where larvae accumulate, where it would be possible to find an available pool of 

larvae (Pineda, 2000). But we need to consider where the larvae come from and how they 

would reach these pools. It is difficult to measure all the possible variables that could 

affect larval distribution and therefore to estimate the position, the size (Natunewicz & 

Epifanio, 2001) and the variability within these plankton patches. Offshore dispersal, due 

to large oceanographic processes, could strongly affect the distribution of larvae and 

transport them over long distances (Widdows, 1991; Stoner & Davis, 1997). However, 

physical factors (and for some species, behaviour) can control retention and trap larvae 

with a strong effect on the scales of dispersal (Mariani et al., 2000; McQuaid & Phillips, 

2000; Caceres & Soluk, 2002; Drouin et al., 2002; Zeidberg & Hammer, 2002). 

VanDover et al. (2001) suggest that there could be a trophic explanation for local 

dispersal and larval retention at hydrothermal vents, as it would be advantageous for 

larvae to be retained locally where there are symbionts that can contribute to larval 

growth. Strathmann et al. (2002) find larval retention to be advantageous for larval 

survival. In fact, since the parental and juvenile habitats are very favourable, larvae would 

do better if retained locally rather than being dispersed over large distances (Strathmann 

et al., 2002). 

Although some bivalve larvae show active swimming behaviour, controlling their 

position in the water (Dobretsov & Miron, 2001; Norkko et al., 2001), some studies on 

mussel larvae and other molluscs seem to support the idea that they are 
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transported passively, without even showing the patterns of vertical migration that 

barnacle larvae do (Scheltema, 1995; McQuaid & Phillips, 2000; Satumanatpan & 

Keough, 2001). On oceanic scales, dispersal would be limited by large-scale 

hydrodynamics. More locally the direction and the degree of dispersal would depend 

completely on hydrography, and retention within nearshore waters would be influenced 

mainly by changes in wind direction (McQuaid & Phillips, 2000).  

From the points discussed above, there is reason to believe that larvae distributed so far 

offshore as to reach the Agulhas current would be lost and irrelevant, even though the 

present study did not consider spatial scales larger than a few kilometers along the coast 

and hundreds of meters offshore. Roberts (unpubl. data) has recently found that an 

oceanographic drifter deployed 2km offshore in this region was transported 

approximately 770km south to the region of the subtropical convergence in just 52 days. 

 

Temporal variability 

In addition to spatial variability, the abundance of pelagic larvae is strongly influenced by 

time (Beukema et al., 2001; Drouin et al., 2002; Poulin et al., 2002). This was obvious 

during the present study, though the abundance of Perna larvae in the water column was 

very limited throughout almost the whole study period. 

The occurrence of large peaks of larval abundance in March and April 2000 and, 

thereafter the almost complete absence of larvae from the water column do not agree with 

other studies done on the same species, either in the same area or along the same coast. In 

these studies it seemed that P. perna larvae were continuously present throughout the 

year, although densities fluctuated considerably (Lasiak, 1986; Lawrie & McQuaid, in 
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prep.). These different findings could be due to geographical differences (Lasiak’s study 

was run 400km farther east) or, more probably, temporal differences (Lasiak’s study was 

done between 1982 and 1983 and Lawrie & Mc Quaid’s between 1998 and 1999). In this 

study, time had a very strong influence on larval abundance, both at coarse and fine scales 

(from seasonal to daily observations). 

The system in which larvae were found is physically extremely unpredictable at many 

scales and that is why the abundance of larvae changed not only seasonally, but also 

dramatically from day to day. For example, larvae were often abundant at a particular 

location on a particular day, but not the day after or before. Hence, the concept of 

sampling on the “right” day, at the “right” place appears to be very important. Daily 

sampling was the finest scale at which sampling was done, but variability in the 

distribution of larvae might occur at even finer temporal scales. However, in order to test 

variability of larval availability at fine temporal scales, abundance of larvae should be 

assessed with a different experimental design. Sampling in the water column should be 

done at much more frequent intervals than in the present study (McQuaid & Phillips, 

2000). 

Nevertheless, the sampling interval chosen for this investigation was intended to assess 

variability of larvae from month to month. In fact, although the precise day and time in 

which most larvae were present in the water could have been missed, the fortnightly 

sampling procedure should assure the collection of new larvae following potential 

successive spawning events. Pulfrich (1997) supports this design, considering monthly 

sampling of bivalve larvae to be a poor estimation of real larval densities while 

fortnightly sampling can track spawning events. In fact the development time for a 
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bivalve larva varies between three to four weeks, from the appearance of the veliconch to 

disappearance as a pediveliger (Pulfrich, 1997). In this way, fortnightly sampling is 

frequent enough to identify the appearance of new larvae while also detecting the arrival 

of larvae from different areas. 

Although a few studies have considered the possible effects of lunar or tidal cycle on the 

abundance and distribution of planktonic larvae offshore (Stoner & Davis, 1997; Paula et 

al., 2001; Ross, 2001; Satumanatpan & Keough, 2001), the present investigation showed 

that moon did not affect the densities of mussel larvae. During this study larvae were 

caught in abundance in nearshore waters on only two occasions: one at full moon and the 

other at new moon. The lack of significance of lunar effect in this study emphasises the 

high variability of this system where oceanographic currents and finer scale 

hydrodynamics seem to be the factors that most strongly influence larval availability of P. 

Perna in the water column. However, the same sampling design, applied when larvae 

occurred at high densities, could lead to results different from the present one. 

The next chapter discusses how the effects of spatial and temporal factors that operate on 

larval settlement are different from those affecting larval distribution in nearshore waters. 
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Chapter 3  

Settlement of Perna perna on the south coast of South Africa: spatial 

and temporal variability 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     “There are three kinds of lies: lies, damned lies,  
                                                                         and statistics” 
        Mark Twain   
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Introduction 

Sedentary intertidal organisms with a pelagic larval stage, like mussels, can be considered 

as forming open populations, to distinguish them from species with closed populations, in 

which adults and offspring belong to the same community and where limited migration 

occurs across the perimeter of the population (Roughgarden et al., 1985). Gametes of 

external fertilizers are released into the water where larvae will spend some time before 

returning to the rocky shore. Consequently, larvae generally have little chance of 

returning to the adult population from which the gametes were initially released. In 

addition, migration among such populations takes place not over a perimeter, but through 

the water column, and therefore occurs on much larger spatial scales than a two 

dimensional area (Roughgarden et al., 1985). 

The process that describes the return of larvae to the shore is settlement, which is 

considered one of the main processes that regulates the dynamics and structure of benthic 

populations (Roughgarden et al., 1988; reviewed by Underwood & Fairweather, 1989; 

Olafsson et al., 1994; Caley et al., 1996; Hunt & Scheibling, 1998; Balch & Scheibling, 

2000; Fraschetti et al., 2003). The literature describes this process in several ways, but 

there has also been some confusion through a failure to distinguish settlement from 

recruitment. This ignores post-settlement mortality, which is often a very important 

phenomenon (Keough & Downes, 1982; Connell, 1985; Minchinton & Scheibling, 1993; 

Rodríguez et al., 1993; Gosselin & Qian, 1997; Balch & Scheibling, 2000; Jenkins et al., 

2000; Fraschetti et al., 2003). Therefore, there is a need to redefine these two distinct 

processes, which are important determinants for the structuring of intertidal communities.  



  

Settlement is the permanent, reversible or irreversible contact that planktonic larvae 

establish with the substratum (Bayne, 1964; Keough & Downes, 1982; Connell, 1985; 

Lasiak and Barnard, 1995; Jenkins et al., 2000; Fraschetti et al., 2003). As this contact is 

made the larvae may or may not go through a phase of metamorphosis (Seed & Suchanek, 

1992). Poulin et al. (2002), consider settlement to be the transition from the planktonic 

larval stage to life in the benthos.  

Recruitment of many sessile marine juveniles into the adult population, in general, is 

more difficult to define, as the difference between settlers and recruits is not as clearly 

defined as the simple arrival of new individuals on the shore. However, regardless of the 

species under examination, recruitment is generally described as the number of 

individuals that have recently settled and that have survived for a certain period after 

settlement, during which time some degree of post-settlement mortality may have 

occurred (Bayne, 1964; Keough & Downes, 1982; Connell, 1985; Lasiak & Barnard, 

1995). Pineda (2000) defines recruitment rate as the rate at which juveniles join the 

population.  

Most studies have used morphometric analysis to define settlement and to distinguish this 

factor from recruitment. In the case of bivalves, specific size classes (not always 

completely corresponding) have been given at which the larvae are considered to be 

competent for settlement (Bayne, 1964; McGrath et al., 1988; Widdows, 1991; Caceres-

Martinez et al., 1993; Lasiak & Barnard, 1995; Buchanan & Babcock, 1997; Pulfrich, 

1997; Hunt & Scheibling, 1998; Ramirez & Caceres-Martinez, 1999). Categorisations 

have been made in accordance with measurements of laboratory-reared larvae (Siddall, 
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1980), descriptions of larval morphology (Hanyu et al., 2001; Garland & Zimmer, 2002), 

or measurements of animals found on artificial substrata (Lasiak & Barnard, 1995). 

 In the present study, it is mainly settlement of Perna perna on the shore that has been 

considered. In this context settlement is described as the first arrival of larvae on the 

rocks, while recruits are considered to be those individuals that had gone through 

morphometric changes having already settled on the rocks for a period longer than two 

days. The two days is the minimum period that ensures no morphometric larval change 

and no loss of larvae from the pads. (pers. obs.; Lawrie, pers. comm.; Bownes, pers. 

comm.). In this study, another means of distinguishing settlers from recruits is from a 

description of the shell. The size and characteristics of the shells of recruits clearly differ 

from those of both settlers and larvae found in the water column, which are very similar 

(pers. obs.). Settlement is the process associated with the first encounter of the substrata 

and therefore, it is also the process most closely related to larval availability in the water 

column. 

Bayne (1964) suggested a different model for the interpretation of settlement in bivalves: 

the primary-secondary settlement theory. His studies on mussels showed that larvae were 

able to attach initially to filamentous substrata like algae and then to detach from them. 

After being suspended again in the water the larvae were able to reattach on adult mussel 

beds (Bayne, 1964). Bayne considered this process an adaptive mechanism: larvae 

settling onto mussel beds only during secondary settlement would reduce competition 

between larvae and adults. This theory has been supported (Eyster & Pechenik, 1987; 

Pulfrich, 1996) or refuted (McGrath et al., 1988; Caceres-Martinez et al., 1993; Lasiak & 

Barnard, 1995) by various studies. Huxham & Richards (2003) support the theory that 
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postlarval active substratum selection determines the final adult distribution of Macoma 

baltica and Cerastoderma edule. Still, many of these studies have concentrated on the 

definition of this process, without really considering the importance of settlement itself in 

determining the structure of the final adult population (Gaines & Bertness, 1992). In order 

to be able to make predictions about the dynamics and variability of the adult population, 

settlement rates should be determined and the possible causes that affect this process and 

its variability should be identified. Only relatively recently have investigations attempted 

to quantify settlement and to establish which are the factors that can influence it (Jenkins 

et al., 2000). For example, Connell (1985) proposed the idea that a quantification of 

settlement is necessary to determine what mechanism affects the final size of an intertidal 

population. He observed that variation in settlement rates affected mortality of recently 

settled larvae and therefore, the final size of the population. If there was generally high 

settlement of barnacle larvae, then post-settlement processes influenced and gave shape to 

the adult population. In contrast, if sparse settlement occurred, then the spatial and 

temporal variability of settlement itself influenced the size structure and the distribution 

of adults. Underwood & Denley (1984) also found that settlement of barnacles was very 

important in determining variability and the composition of intertidal populations when 

settlement rates were low. Smaller numbers of larvae occupy less space and, therefore, 

have more chance of surviving and so structuring the final community. Navarrete & 

Wieters (2000) found that at least 65% of mortality of recently settled barnacles could be 

attributed to the adults and their predation of larvae during low recruitment periods. 

However, the negative effect of adult predation on settlement disappeared during high 

recruitment years. 
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Different studies have highlighted several possible features that can influence settlement 

in marine and freshwater systems, and they can be either physical or biological 

(Delafontaine & Flemming, 1989; Pineda, 1994; Hills & Thomason, 1996; Walters & 

Wethey, 1996; Marsden & Lansky, 2000; Pineda, 2000; Kobak, 2001). Among the main 

factors that control the abundance of invertebrate larvae settling on the rocks are the 

effects of the hydrodynamics (Abelson & Denny, 1997; Archambault & Bourget, 1999). 

In addition to these physical factors, larval behaviour can have a strong impact on the 

arrival of larvae. Some larvae can actively swim or control their position in the water 

column and determine where and when to settle (Scheltema, 1974; Scheltema, 1986; 

Bourget, 1988; Hurlbut, 1991; Jenkins et al., 2000; Pineda, 2000; Tankersley et al., 

2002). Once larvae are competent to settle, there can be some sort of cue that indicates to 

them the presence of the “right” substratum (Raimondi, 1988). Again, these cues can be 

either biotic or abiotic, such as surface chemical characteristics, biofilm formation on the 

rock surface, substratum orientation, sunlight, texture, magnetism and the presence of 

conspecifics, especially if the species considered shows gregariousness (Cooper, 1981; 

Stamps & Krishnan, 1990; Morse, 1991; Roberts et al., 1991; Hills & Thomason, 1996; 

Yulianda, 1998; Marsden & Lansky, 2000; Olivier et al., 2000; Kobak, 2001; Lau & 

Qian, 2001; Harder et al., 2002; Kingsford et al., 2002; Lagersson & Høeg, 2002; Pineda 

et al., 2002). 

All these factors operate at different spatial and temporal scales (Gaines & Bertness, 

1992; Bertness et al., 1996). Therefore, the high variability frequently observed in 

settlement rates can be explained on the basis of variation in such features: in fact, they 

change at large and fine scales over time and space (Noda et al., 1998; Balch & 
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Scheibling, 2000; Jeffery & Underwood, 2000; Jenkins et al., 2000). In particular, 

variability of hydrodynamics is inevitable: large and fine-scale changes in current patterns 

over time and space may profoundly influence settlement processes.  

However, most of the studies performed on variability of settlement have concentrated on 

only one aspect, the study of either spatial or temporal variation (Bayne, 1964; Rojas, 

1969; Acuna, 1977; Denley & Underwood, 1979; Caceres-Martinez et al., 1993; Caceres-

Martinez & Figueras, 1997; Balch & Scheibling, 2000). Those surveys that have 

investigated both forms of spatial and temporal variation, have not usually measured both 

large and fine scales of variability. 

Thus, there is a great need for studies in which as many variables as possible are 

considered together, at different scales, in order to get a more complete picture of the 

dynamics that regulate the arrival of pelagic larvae onto the shore (Minchinton & 

Scheibling, 1991; Hunt & Scheibling, 1998; Jeffery & Underwood, 2000; Jenkins et al., 

2000). 

The present study is one of the few examples of the concurrent investigation of different 

scales of temporal and spatial variation in settlement of benthic invertebrates. Larval 

settlement was studied in Perna perna, on the south coast of South Africa. In this study, 

settlement rates were measured in several temporal studies, involving seasonal to daily 

sampling, at different spatial scales, from kilometers to hundreds of meters.
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Materials and Methods 

Study sites: The sites chosen for the settlement investigation were the same as those used 

for the larval availability study: Middle Beach in Kenton (KE) and High Rocks (HR), 

3km from Kenton-on-Sea (see Figs. 2 & 3, chapter two). 

For the settlement study, each intertidal site had three locations, opposite the offshore 

ones, approximately 300m apart, all at the same level on the low shore (Fig. 2). All 

locations were at the edge of wave-cut platforms of Aeolian dune rock. The six locations 

all experience similar exposure to wave action, mostly receiving the influence of 

secondary waves. In this context, secondary waves refer to waves that roll onshore, after 

the main wave force has been partially dissipated within the surf zone. Thus, closer 

inshore, waves are less energetic, due to offshore reefs that break the maximum force of 

the waves. Intertidal sand movement was seasonal and quite substantial on the highest 

level of the shore, but none of the locations was ever covered or strongly affected by sand 

during the study. 

On the low shore, mussel beds show very patchy distribution, with areas of high and low 

densities. However, all the locations were chosen where adult mussel cover was densest 

and similar (approximately 80% cover). All locations were characterised by the presence 

of the foliose red alga Gelidium pristoides, with which mussel patches were often 

interspersed. 

Settlement: Larval settlement on the shore was investigated from March 2000 to June 

2001 at intertidal sites and locations. The arrival of Perna perna larvae on the shore was 

monitored at each location, at regular intervals, using kitchen scouring pads as artificial 

larva collectors. Pads were made of plastic, circular, about 10-11cm in diameter and 2 cm 

  62 



  

thick (Fig.1). Prior to use on the shore, new pads were left in sea water for one or two 

weeks, to develop a natural biofilm and leach any surface chemicals.  

 

 

 

 

 

 

 

 

 

            Fig. 1 Example of plastic scouring pad secured to the rocks. 

Five artificial larva collectors were secured about 20cm apart at each location, using 

screws attached to the rocks (Fig. 2). Pads were secured to the screws and replaced 

regularly using three plastic cable ties (Fig. 1). Since the places where pads were attached 

needed to be replaced quite frequently, due to the loss of screws, the exact positions of the 

pads changed. 
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Fig. 2 Experimental design for the intertidal settlement study. One site only (detailed description 
in text). 
 

After collection, pads were returned to the laboratory. The samples were usually 

processed immediately after collection, but on some occasions pads were frozen before 

analysis. Pads were rinsed thoroughly in fresh water that was filtered through a 75µm 

sieve. The contents were collected in a Petri dish and examined under a dissecting 

microscope, at 12X magnification. Settlers of Perna perna were identified (Fig. 3), 

counted, measured to the nearest 0.08mm, using an eye - piece graticule (1mm = 12 

units), and preserved in 70% alcohol. 

350µm350µm

 

 

 

 

 

 

                                  Fig.3 Perna perna settler trapped in a scouring pad. 
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Periodicity: as for larval abundance, temporal variation was inspected at different scales.  

In order to understand how settlement changes from season to season, sampling was 

performed throughout the duration of the study, for 16 months. In addition, the influences 

of the lunar and tidal cycles on settlement were also examined. To inspect these aspects, 

sampling took place fortnightly, throughout the study: around full moon and new moon 

spring tides. At each spring tide, pads were collected and replaced at two day intervals: 

pads were collected and replaced two days before spring tide, on spring tide (at the lowest 

tide) and two days after spring tide. 

In order to detect possible differences in daily settlement rates (fine-scale variability) pads 

were replaced daily. This scale of variability was investigated during periods of expected 

high settlement (Lawrie & McQuaid, in prep.), which coincided with the dates of the daily 

plankton sampling. 

Statistical analysis: The use of a repeated measures design was inappropriate because the 

placement of pads changed frequently due to the frequent loss of screws from the rocks. 

As a result, the approach used for the settlement study was analysis of variance and the 

nested design was the same as described in the previous chapter on larval availability. 

Significant results were tested by post-hoc comparisons using the Student Newman-

Keuls’ test (Zar, 1984). Post-hoc tests were run only when the outcome of the Anova did 

not reveal any significant interaction amongst factors: otherwise this would have made 

the post-hoc tables difficult to interpret. 

Settlement was investigated at a variety of temporal scales, using different subsets of 

data. A single analysis considering all different scales simultaneously would have lead to 

an unbalanced design, therefore, distinct analyses for each temporal study were required. 

  65 



  

In fact, during the settlement study, because pads were occasionally lost, especially 

during storms, it was necessary to balance the data set. Data were balanced choosing one 

of two options. When up to two out of the five pads were lost, the mean from the 

remaining pads was used for the missing values (this occurred in between 2% and 5% of 

sampling events, from daily to seasonal studies). Those dates when three or all five pads 

were lost at one or more locations were eliminated from the analysis. This is why, 

especially during the lunar and daily studies, some sampling dates are missing. 

There were five separate analyses for this study: 1) seasonal; 2) lunar; 3) tidal; 4) daily 

(two separate studies for 2000 and 2001); 5) neap tide recruitment (to examine the 

influence of the neap tide on recruitment rates).  

Settlement was monitored over 29 fortnightly sampling events. Each pad, used to quantify 

settlement, was collected after 2 days on the shore. During each fortnightly sampling 

event, pads were collected two days before spring tide, 2 days after spring tide and at 

spring tide. Different subsets of these data were used in each of the following analyses. 

1) Seasonal study. This was based on samples collected at spring tide only. Using 

these samples, settlement was monitored over 29 sampling events.  

2) Lunar study. This study was based on the same samples used for the seasonal 

study, using only pads collected at spring tide. However, the data set for this 

analysis was reduced to 24 events, due to the need to balance for missing data. 

3) Tidal study. The tidal study examined the effect of the state of the tide, around 

spring tide. In particular, this study examined the possibility that settlement 

differed before, during and after spring tide. In contrast to the above analyses, this 

study used data from pads collected two days before spring tide, two days after 
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spring tide and at spring tide. In this way, settlement was followed over 12 spring 

tides, for a total of 36 sampling events. 

4) Daily studies. There were two separate daily sampling events, in 2000 

(March/April) and 2001 (February/March), when pads were replaced daily for 16 

and 20 days respectively. 

5) Neap tide recruitment study. This study considered the abundances of larvae that 

accumulated between two consecutive spring tide cycles, for a total of 26 

sampling events. The pads considered for this analysis were collected on the first 

day of a spring tide cycle, after being on the shore for the duration of the previous 

neap tide period. The neap tide recruitment study examined recruitment rather 

than settlement, since pads were left on the shore from the last day of a spring tide 

cycle to the first day of the following one (for a total of 7 to 9 days). Data were 

averaged to one day. 

For the lunar study, the factor moon was crossed by the factors date, site and location 

(with location nested within site). The same design was applied to the tidal study in which 

tide was crossed by date, site and location (with location nested within site). 

All temporal factors, with the exception of day in the daily studies, were considered to be 

fixed. The two spatial variables, location and site were treated as random factors. The 

explanation for the choice of the type of effect is described in the methods section of the 

previous chapter under “statistical analysis” (see chapter two). 

The seasonal, lunar and tidal studies were conducted separately so that the data set would 

be maximised and balanced. In fact, by examining the effect of date, moon and tide 

within the same analysis, the whole data set for ANOVA would have been reduced to 
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only one complete sampling event. Table 1 shows a summary of how factors were treated 

in each study and the type of interactions considered. 
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Table 1 Summary of analyses of variance used for the different studies on settlement of Perna 
perna larvae. Independent variables, interactions within factors, type of effect and transformation 
choice are listed for each study. 
 

ANALYSIS EFFECT 
(Random/Fixed) TRANSFORMATION 

1. Seasonal study: variation of settler abundance due to 
date/season 

 Log transformation, 
Log (X+1) 

Site                                                                      
Location (Site) 
Date 
Date *Site 
Date *Location (Site) 

Random 
Random 

Fixed 
Random 
Random 

 

2. Lunar study: variation of settler abundance due to 
the lunar phase  

 Log transformation, 
Log (X+1) 

Site                                                                      
Location (Site) 
Date 
Moon  
Date * Moon 
Date *Site 
Moon*Site 
Date *Location (Site) 
Moon*Location (Site) 
Date *Moon*Site 
Date *Moon*Location (Site) 

Random 
Random 

Fixed 
Fixed 
Fixed 

Random 
Random 
Random 
Random 
Random 
Random 

 

3. Tidal study: variation of settler abundance due to 
state of tide  

 Log transformation, 
Log (X+1) 

Site                                                                      
Location (Site) 
Date 
Tide  
Date *Tide 
Date *Site 
Tide*Site 
Date *Location (Site) 
Tide*Location (Site) 
Date *Tide*Site 
Date *Tide*Location (Site) 

Random 
Random 

Fixed 
Fixed 
Fixed 

Random 
Random 
Random 
Random 
Random 
Random 

 

4. Daily separate studies for 2000 & 2001: variation of 
settler abundance due to day of collection  

 NOT transformed 

Site                                                                      
Location (Site) 
Day 
Day*Site 
Day* Location (Site) 

Random 
Random 
 Random 
Random 
Random 

 

5. Neap tide recruitment study: variation of recruit 
abundance between two consecutive spring tides  

 Log transformation, 
Log (X+1) 

Site                                                                      
Location (Site) 
Fortnight 
Fortnight *Site 
Fortnight *Location (Site) 

Random 
Random 
Random 
Random 
Random 
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Results 

The sizes of Perna settlers collected on scouring pads during the settlement study were 

more variable than for the larval availability study. Occasionally, individuals of up to 

2.5mm shell length or greater were found on the pads (23% of collected larvae), but the 

most common size of larvae collected on the shore ranged between 200 and 400µm 

(almost 60% of all collected larvae) (Fig. 4). The 200 - 400µm size class was used for the 

analysis of abundance of larvae settling onto the rocks at different spatial and temporal 

scales, as animals falling in this range were considered to be primary settlers, arriving on 

the shore for the first time. On most occasions, the morphology and the morphometrics of 

settlers were also similar to those of larvae collected from the water column. However, in 

some cases, morphological differences could also be detected when comparing larvae 

from the water column and settlers (see Fig. 5 chapter 2 and Fig.3 in chapter 3). For the 

neap tide study, organisms from all size classes were taken into account, since this 

analysis considered recruit rather than only settler abundance. 

Each of the following sections discusses the results of the different temporal studies, 

dealing first with the raw data and figures and then with the ANOVA results. 

1) Seasonal study 

The data for this study were obtained from scouring pads collected twice a month during 

spring tide for 16 months. In particular, pads were collected during lowest spring tides, 

after being left on the shore for two days. 

The abundance of settlers collected on the pads was generally low throughout the whole 

study period. Although there were clear differences in abundances of settlers collected at 

different locations, on the whole, settlers collected at the two sites, HR and KE, showed 
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similar patterns with a small peak in abundance on the 29th of September 2000 and a 

bigger one on the 27th of December 2000 (Fig. 5). The absolute maximum value was 

recorded at HR D, where, on the 27th of December, a mean of 16.8 ± 4.79 larvae per pad 

was found (Fig. 5). 

The assumption of homogeneity of variance for the ANOVA was satisfied when the 

logarithmically transformed data were tested with the Cochran’s test (p > 0.05).  

On a seasonal basis, variability in abundance of larvae arriving on the shore seemed to be 

due to different factors. Date and location as main factors had significant effects on settler 

variability (p < 0.00001; Table 2). The interaction between date and location also 

explained much of the variability in the abundance of settlers (p < 0.00001). The effect 

due to the interaction between date and site was also a significant source of variability 

(p<0.01). This reflects the fact that, on the whole, similar numbers were found at the two 

different sites (no significant effect of site), but that the timing differed. The numbers of 

larvae varied significantly depending on the date and from one location to the next.  

 
Table 2 ANOVA for seasonal study. df = degrees of freedom; MS = Mean Square; F = F-Ratio; p 
= probability value; n.s. = p > 0.05; **** = p < 0.00001; ** = p< 0.01 
 
 
 
  df MS F p 

Date 26 3.84789 22.1956 **** 
Site 1 4.10988 1.2072 n.s. 
Location (Site) 4 3.40421 19.6366 **** 
Date*Site 26 0.30177 1.7406 ** 
Date*Location 104 0.41396 2.3878 **** 
Error 648 0.17336   
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Fig. 5 Seasonal settler availability at KE (locations A, B, C) and HR (locations D, E, F). 
Points indicate mean values and error bars show standard errors (SE). 
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2) Lunar study 

Possible effects of the phase of the moon on settlement were examined in this analysis. In 

this study the assumption of homogeneity necessary for ANOVA was satisfied for 

logarithmically transformed data (Cochran’s homogeneity test; p > 0.05). 

It appeared that, at both sites, more larvae generally arrived at new moon than at full 

moon, although there were clear differences in abundances at the various locations (Fig. 

6). Nevertheless, the analysis of variance did not show a clear effect of moon as a main 

source of variability for the larvae coming from nearshore waters onto the rocks (p > 0.05; 

Table 3). The non-significant effect of moon as main factor could have been masked by 

the significant interaction between date and moon (p < 0.00001). The interaction between 

date, moon and location was also significant (p < 0.00001). This reflects the fact that, on 

those occasions when large numbers of settlers were collected on the pads, the phase of 

the moon influenced the arrival of larvae to the shore (Fig. 6). Date and location, nested 

within site, also had a significant effect on the variability of abundance of larvae (p < 

0.00001). The p-values for the factor site and the interaction between date and site, and 

moon and site, were not significant (p > 0.05; Table 3).  
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Table 3 ANOVA for lunar study. df = degrees of freedom; MS = Mean Square; F = F-Ratio; p = 
probability value; n.s. = p > 0.05; **** = p < 0.00001 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 df MS F p 

Date 12 5.5809 17.47017 **** 
Moon 1 11.8994 9.38660 n.s. 
Site 1 3.3522 0.74625 n.s. 
Location (Site) 4 4.4921 26.09016 **** 
Date *Moon 12 2.9955 10.94390 **** 
Date*Site 12 0.3195 1.34766 n.s. 
Moon*Site 1 1.2677 257.44365 n.s. 
Date*Location 48 0.2370 1.37676 n.s. 
Moon*Location 4 0.0049 0.02860 n.s. 
Date*Moon*Site 12 0.2737 0.39779 n.s. 
Date*Moon*Location 48 0.6881 3.99650 **** 
Error 624 0.1722   

                                                                                                                 75  



  

 
        KE                                                                       HR   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

KE A

0

5

10

15

20

Apri
l 

May
 

Ju
ne

 
Ju

ly 

Aug
us

t 

Sep
t/O

ct 

Oct/
Nov

 

Dec
/Ja

n 

Ja
n/F

eb
 

Fe
b/M

arc
h 

Marc
h/A

pr 

Apr-
Ju

ne
 

A
bu

nd
an

ce
 (s

et
tle

rs
/p

ad
)

HR D

Apri
l 

May
 

Ju
ne

 
Ju

ly 

Aug
us

t 

Sep
t/O

ct 

Oct/
Nov

 

Dec
/Ja

n 

Ja
n/F

eb
 

Fe
b/M

arc
h 

Marc
h/A

pr 

Apr-
Ju

ne
 

New  Moon

Full Moon

KE B

0

5

10

15

20

Apri
l 

May
 

Ju
ne

 
Ju

ly 

Aug
us

t 

Sep
t/O

ct 

Oct/
Nov

 

Dec
/Ja

n 

Ja
n/F

eb
 

Fe
b/M

arc
h 

Marc
h/A

pr 

Apr-
Ju

ne
 

A
bu

nd
an

ce
 (s

et
tle

rs
/p

ad
)

KE C

0

5

10

15

20

Apri
l 

May
 

Ju
ne

 
Ju

ly 

Aug
us

t 

Sep
t

 
 

/O
ct 

Oct/
Nov

 

Dec
/Ja

n 

Ja
n/F

eb
 

Fe
b/M

arc
h 

Marc
h/A

pr 

Apr-
Ju

ne
 

Month

A
bu

nd
an

ce
 (s

et
tle

rs
/p

ad
)

HR E

Apri
l 

May
 

Ju
ne

 
Ju

ly 

Aug
us

t 

Sep
t/O

ct 

Oct/
Nov

 

Dec
/Ja

n 

Ja
n/F

eb
 

Fe
b/M

arc
h 

Marc
h/A

pr 

Apr-
Ju

ne
 

HR F

Apri
l 

May
 

Ju
ne

 
Ju

ly 

Aug
us

t 

Sep
t/O

ct 

Oct/
Nov

 

Dec
/Ja

n 

Ja
n/F

eb
 

Fe
b/M

arc
h 

Marc
h/A

pr 

Apr-
Ju

ne
 

Month

 
Fig. 6 Lunar settlement at KE (locations A, B, C) and HR (locations D, E, F). Histograms 
indicate mean values and error bars show standard errors (SE).  
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3) Tidal Study 

The effect of tide on settlement was also investigated, for the entire study period. Days 1, 

2 and 3 of each tide represented, respectively, two days before full spring tide, spring tide 

and two days after spring tide. The graphs did not show clear patterns, with no obvious 

influence of state of the tide on the abundance of larvae arriving on the shore (Fig. 7). 

Cochran’s test showed homogeneity of transformed data (p > 0.05). 

The results of the analysis of variance, confirmed these observations: there was a specific 

non-significant effect of state of the tide (state of the tide in this analysis indicates which 

day of tide: 1, 2, 3) (Table 4). Only date and location had significant effects as main 

factors (p < 0.00001 for both components), while the factor site did not (Table 4). The 

only interactions that influenced the variation of the settler abundance in a significant way 

involved those two variables that were significant as main effects: the interactions 

between date and location and that among date, location and tide (p < 0.00001). In other 

words, tide affected locations differently and this effect differed among dates. This 

suggests that the effect of tide was in fact due to an effect of day, rather than state of the 

tide per se. 

 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                                                                 77  



  

Table 4 ANOVA for tidal study. df = degrees of freedom; MS = Mean Square; F = F-Ratio; p = 
probability value; n.s. = p > 0.05; **** = p < 0.00001 

 
 

 

 

 

 

 
 
 
 

 df MS F p 

Date 9 22.1163 45.0525 **** 
Tide 2 0.6383 1.3002 n.s. 
Site 1 7.1337 0.88788 n.s. 
Location (Site) 4 8.0345 49.7396 **** 
Date*Tide 18 0.9716 1.4918 n.s. 
Date *Site 9 0.4909 1.2466 n.s. 
Tide*Site 2 0.0075 0.0544 n.s. 
Date *Location 36 0.3938 2.4379 **** 
Tide*Location 8 0.1381 0.8547 n.s. 
Date*Tide*Site 18 0.6513 0.8526 n.s. 
Date*Tide*Location 72 0.7639 4.7290 **** 
Error 716 0.1615   
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Fig. 7 Tidal settler availability at KE (locations A, B, C) and HR (locations D, E, F). Histograms 
indicate mean values for locations and error bars show standard errors (SE). 
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4) Daily study (2000) 

To look at variability of numbers of settlers on fine temporal scales, pads were collected at 

daily intervals, on two separate occasions during 2000 and 2001. 

Daily investigations of settlement from 20th March to 10th April 2000 (a total of 16 days) 

again revealed very low numbers of settlers at both High Rocks and Kenton with 

maximum mean values of about 2 larvae/pad/day (Fig. 8). Although the values were low, 

the numbers of settlers changed from one day to the next and from one location to another 

at both sites (Fig. 8). 

Cochran’s test confirmed the homogeneity of the untransformed data (p > 0.05). 

Analysis of variance revealed that only location had a significant effect on the variability 

of larvae (p < 0.00001), while the components site, day, and all possible interactions 

showed no significant effects (Table 5).  

 
 
Table 5 ANOVA for daily 2000 study. df = degrees of freedom; MS = Mean Square; F = F-Ratio; 
p = probability value; n.s. = p > 0.05; **** = p < 0.00001 

 
 
 
 

 

 

 df MS F p 

Day 15 0.63160 0.90889 n.s. 
Site 1 8.02988 1.32186 n.s. 
Location (Site) 4 6.07467 11.71388 **** 
Day*Site 15 0.69491 1.34000 n.s. 
Day*Location 60 0.51859 1.84986 n.s. 
Error 384 0.28034   

                                                                                                                 80  



  

The Student Newman Keuls post hoc test for locations revealed significant differences 

between KE B and all the other locations (Table 6). KE B was the location where 

maximum numbers of settlers were collected, while at all other locations the values were 

generally very low (Fig. 9). 

 

Table 6 Student Newman Keuls post hoc test on locations, homogeneous groups for 2000 daily 
study 
 

Group 
Site Location 

Tot larvae 
Mean per 

pad per day 1 2 3 

KE A 0 ****   
HR F 0.054 ****   
HR E 0.083 **** ****  
HR D 0.147 **** ****  
KE C 0.294  ****  
KE B 0.767   **** 
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Fig. 8 Daily 2000 settler availability at KE (locations A, B, C) and HR (locations D, E, F). 
Points indicate mean values and error bars show standard errors (SE). 
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Fig. 9 Daily study (2000). Histograms indicate cumulated means for locations and error bars show standard errors (SE). Numbers in bold show 
the homogenous groups from the Student Newman Keuls’ post hoc test. 
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4’) Daily study (2001) 

The second daily collection was performed over 19 days, in 2001, from 7th February to 

11th March. 

As in 2000, numbers of settlers collected at the two sites during this daily sampling were 

very low. In this case as well, there were differences in abundances between one day and 

the next one and differences between one location and another within a site (Fig. 10). 

Homogeneity of untransformed data was tested, and confirmed, using Cochran’s test (p > 

0.05). 

Analysis of variance confirmed the strong spatial variability at location level, already 

observed by simply plotting the data (Fig.10). In fact, the variation in abundance of 

settlers seemed to be affected by the interaction between day and location (p < 0.001) and 

location (p < 0.00001). The other factor that had a significant effect was day (p < 0.05) 

(Table 7).  

Settler abundance at each location (Fig.11) seemed to be quite similar to the patterns of 

the daily 2000 collections (Fig.8). In 2000 and 2001, KE B was the location where 

maximum numbers of settlers were collected, while at all other locations the values were 

generally very low (Fig. 11). 

 

 

 

 

 

 



  

Table 7 ANOVA for daily 2001 study. df = degrees of freedom; MS = Mean Square; F = F-Ratio; 
p = probability value; n.s. = p > 0.05; **** = p < 0.00001; *** = p < 0.001; * = p < 0.05 

 
 
 
 
 
 
 
 
 

 df MS F p 

Day 17 1.11232 1.77211 * 
Site 1 10.02686 1.72725 n.s. 
Location (Site) 4 5.80511 9.99080 **** 
Day*Site 17 0.62768 1.080264 n.s. 
Day*Location 68 0.58104 1.616127 *** 
Error 432 0.35953   
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Fig. 10 Daily 2001 settler availability at KE (locations A, B, C) and HR (locations D, E, F). 
Points indicate mean values and error bars show standard errors (SE). 
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Fig. 11 Daily study (2001). Histograms indicate cumulated means for locations and error bars show standard errors (SE).
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5) Neap tide recruitment study 

In order to collect information on the numbers of larvae arriving on the rocks during neap 

tides, pads were left on the shore from the last day of collection of one spring tide cycle to 

the first day of the following cycle (in other words 7 - 9 days), throughout the whole 

settlement study. Since pads were left on the shore for a period longer than two days, this 

study considered the abundance of recruits rather than settlers. 

Again, recruits were scarce even when allowed to accumulate over a longer period. 

Similar patterns were observed, with main peaks occurring at both sites on the 1st of May 

2000 and 23rd of December 2000, and generally fewer recruits at HR than at KE (Fig.12). 

Homogeneity of data, tested using Cochran’s test, was achieved after logarithmic 

transformation (p > 0.05).  

ANOVA produced very similar results to the analysis of seasonal settlement data.  

Variability in settler numbers appeared to be due to three components: fortnight, location 

and the interaction between fortnight and location (p < 0.00001 in all cases) (Table 8). 

However, while in the seasonal study the interaction between date and site was significant 

(p < 0.01), for the neap tide recruitment study the interaction between fortnight and site 

was not significant (p > 0.05). If we take the 1st of May and the 23rd of December as 

examples, we can see that the numbers of recruits differed quite considerably between 

different locations (Fig. 12), but peaks of abundance appeared at almost all locations on 

those dates. As it was already observed for the daily studies, the neap study revealed again 

that KE B was the location where most settlers were collected. Again, the significant 

interaction seems to be due to the magnitude of temporal effects, rather than to actual 

differences in timing between locations (Fig. 12). 



  

 
Table 8 ANOVA for neap tide-recruitment study. df = degrees of freedom; MS = Mean Square; F 
= F-Ratio; p = probability value; n.s. = p > 0.05; **** = p < 0.00001 

 
 

 df MS F p 

Fortnight 25 17.5639 18.02598 **** 
Site 1 18.2126 0.64213 n.s. 
Location (Site) 4 28.3627 13.83646 **** 
Fortnight * Site 25 0.9744 0.47533 n.s. 
Fortnight * Location  100 2.0499 8.26745 **** 
Error 624 0.247943   
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Fig. 12 Neap tide recruit availability at KE (locations A, B, C) and HR (locations D, E, F). 
Points indicate mean values and error bars show standard errors (SE). 
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Summary of settlement/recruitment results 

The results (summary table, Table 9) obtained through the analysis of variance 

emphasised an obvious, common trend in the variation of settlement: the strong, highly 

significant effect of location, at all temporal scales. The large spatial scale variable, site, 

never influenced the abundance of Perna perna settlers significantly. The only exception 

was in the seasonal study when there was an interaction between date and site. Time also 

had significant effects in all analyses, with the single exception of the 2000 daily study, in 

which day had no significant effect. The lunar study suggested that the moon may affect 

the numbers of settlers, because, although the effect of moon was not significant as a 

main effect, there was a significant interaction of moon and date. 

The effect of tide could only be investigated in the tide study, but the analysis indicated 

that this component did not affect the arrival of larvae on the shore. 

Finally, the neap tide recruitment study highlighted the significant effects of temporal and 

fine spatial factors, both as main factors and as interaction between location and fortnight.  
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Table 9 Larval settlement/recruitment. Summary of effects of the independent variables 
and interactions in different studies of settler abundance using nested analysis of 
variance. NS = not significant; **** = p < 0.00001; *** = p < 0.01; ** = p < 0.05; -- = 
not applicable. 
 
 

 SEASONAL MOON NEAP TIDE 
RECRUITMENT TIDE DAILY 

2000 
DAILY 

2001 

Site 

Location 

Time 

Time*Site 

Time*Location 

Moon 

Time*Moon 

Moon*Site 

Moon*Location 

Time*Moon*Site 

Time*Moon*Location 

Tide 

Time*Tide 

Tide*Site 

Tide*Location 

Time*Tide*Site 

Time*Tide*Location 

NS 

**** 

**** 

** 

**** 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

NS 

**** 

**** 

NS 

NS 

NS 

 **** 

NS  

NS 

NS 

**** 

-- 

-- 

-- 

-- 

-- 

-- 

NS 

**** 

**** 

NS 

**** 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

NS 
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NS 
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-- 

-- 
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NS 

NS 

**** 

NS 

**** 

NS 

NS 

NS 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

NS 
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** 

NS 

**** 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 
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Discussion 

 
Size and abundance 
 
The choice of an appropriate method is of basic importance when estimating abundances 

of planktonic larvae for the study of intertidal population dynamics. For example, while 

investigating settlement, some studies have highlighted the preference of some species for 

various materials and textures over others (Petersen, 1984; Dobretsov & Wahl, 2001; 

Devakie & Ali, 2002). Eyster and Pechenik (1987) have shown that mussel larvae prefer 

to settle on natural filamentous substrata, such as algal material or byssal threads rather 

than on eyebrow hair, cotton thread, scouring pad fiber or glass fiber. On the other hand, 

the use of artificial collectors is ideal for standardising the quantification of settlement, by 

sampling at frequent time intervals in order to minimise migration, predation and 

mortality of larvae. Collectors also help in the distinction of settlement from post-

settlement processes. In addition to this, the use of artificial larval collectors facilitates 

good replication in space and time (Balch & Scheibling, 2000) and collectors have been 

largely employed for the estimation of abundance of larval stages of invertebrates (sea 

urchins: Rowley, 1989; Harrold et al., 1991; Keasing et al., 1993; Ebert et al., 1994; 

megalops crab: Tankersley et al., 2002; ascidians: Hurlbut, 1991). In the present study, 

the utilisation of scouring pads seemed to be the only option for exploring larval 

abundances over a long period of time (16 months). Traditionally, in this field, the 

estimation of abundances of intertidal settlers or recruits has been done through 

destructive methods, by scraping replicates of small patches of natural substrata from the 
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shore (Todd, 2003). There are three problems with this approach. First, this method 

would have been too destructive for a long term investigation. Second, scouring pads 

offer a uniform and constant area and texture, unlike natural substrata. Lastly, using 

destructive samples it is not possible to tell when larvae arrived. 

Pineda & Caswell (1997) consider the so called intensification effect which produces 

overestimations of settlement rates for barnacles, especially if there is little ideal 

substratum available and if the species considered shows gregarious behaviour. Thus, 

variability in the availability of the “right” substratum can be very important for variation 

in settlement. Also it is better to use traps or collectors that are not too large: settlement 

magnitude could decrease if settlement area increases, unless, again, the species under 

investigation does not show gregariousness (Pineda, 2000). Larval traps should also be 

tested for their efficiency, at fine temporal and spatial scales, for the species they are 

targeting and specifically for the type of environment in which they will be placed (Todd, 

2003).  

In the present study, the choice of artificial collectors seemed to be ideal since the 

homogenous surface of the pads minimises variability of the substratum. The efficiency 

of scouring pads has been tested in at least three other studies, which measured the 

settlement rates of Mytilus edulis (McQuaid, pers. comm.), Perna perna and Mytilus 

galloprovincialis (Lawrie et al., in prep; Bownes and McQuaid, pers. comm.). All 

investigations proved the success of these collectors. In conclusion, the choice of scouring 

pads made of filamentous material and left in sea water to develop a biofilm, seemed to 

be the best option to measure the abundance of mussel settlers over large temporal scales.
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60% of all larvae collected from the scouring pads were in the range of 200 - 400µm and 

were considered settlers. This choice is based on previous studies in which 230µm 

(Siddall, 1980) or the class 250 – 470µm (Ramirez & Caceres–Martinez, 1999) were 

considered the size for competent pediveligers. The remaining 40% of all larvae collected 

in this study were larger than 400µm, with 17% being 400µm – 1mm and 23% larger than 

1mm. Another study on settlement of Mytilus galloprovincialis showed that, although the 

majority of pediveligers were small, a minor proportion was larger than expected. This 

study suggested that a few postlarvae exhibit secondary dispersal (Ramirez & Caceres–

Martinez, 1988). Thus, the results from the present study could support the theory of 

primary and secondary settlement proposed by Bayne (1964), since different sizes of 

larvae were found on collectors specifically sampled for settlement. However, the theory 

also predicts that two different size classes of larvae should be found on different 

substrata: smaller individuals on filamentous material, and larger ones on adult mussels 

beds (Buchanan & Babcock, 1997). This did not correspond with the present findings. 

Although settlement onto mussel beds was not investigated here, pads collected both very 

small competent larvae and larger sized individuals. McGrath et al. (1988) also found that 

competent larvae of Mytilus edulis settle both onto filamentous algae and adult beds. 

Another point against the primary – secondary settlement theory is the fact that no larvae 

larger than 400µm were found when collecting information on the availability of Perna 

larvae in nearshore waters. A simpler explanation for the occurrence of large individuals 

on settlement pads is that larvae, after settling for the first time on the shore, can be 

 95



  

dislodged, actively or passively, on local scales (up to a maximum of 500 meters 

offshore) and reattach locally without following the secondary dispersal processes 

suggested by Bayne (1964) and other supporters of his theory (Eyster & Pechenik, 1987; 

Pulfrich, 1996). 

 

Spatial variability 

The main objective in this study was not to investigate possible secondary dispersal, but 

rather to evaluate the spatial and temporal scales that influence the variability of settler 

abundance. 

There is a general tendency, in the study of settlement of intertidal species, to find that 

spatial and temporal variables operating at different scales affect the distribution and 

abundance of larvae in different ways. Jenkins et al. (2000) believe that the large-scale 

processes that could influence barnacle settlement range from upwelling to local wind 

patterns, while fine-scale factors would depend more on local hydrodynamics, larval 

behaviour and substratum characteristics. 

The delivery of larvae can indeed operate differentially at different spatial scales. Many 

studies suggest that large spatial scale variation controls the distribution and abundance of 

larvae offshore, while larval settlement is more influenced by finer scale variability 

(Connell, 1985; Pineda, 2000).  

Offshore and onshore processes control larval transport and delivery in different ways. 

Offshore transport operates on large spatial scales and on larger numbers of larvae, while 

the larvae are still relatively far offshore. On the other hand, onshore transports work on 

fewer larvae, when they are closer to the shore (Pineda, 2000). Possible processes that 
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could influence the distribution of larvae on large spatial scales are oceanographic 

hydrodynamics, possibly controlled by the moon, wind direction, speed and wave height 

(Jeffery & Underwood, 2000). In contrast, the arrival of larvae onshore, is more affected 

by local hydrodynamics, influenced by coastal morphology, local topography, wave 

action on the shore (Connell, 1985; Gaines et al., 1985; Delafontaine & Flemming, 1989; 

Hills & Thomason, 1996; Jeffery & Underwood, 2000) and by finer scale local micro-

hydrodynamics, influenced by surface roughness, rock cracks, presence of sessile 

individuals, pools, channels, protected and exposed shelves, as well as the availability of 

horizontal or vertical substrata. Under such variable conditions, larvae face different 

conditions even at the same locations (Gaines et al., 1985; Pineda, 2000). Internal waves 

could also affect the differential delivery of larvae along the shore (Jeffery & Underwood, 

2000). The results of this study show clearly that Perna larvae were delivered 

differentially at scales of hundreds of meters (locations), while consistent variability did 

not seem to be caused by larger spatial scale effects (sites, a few kilometers apart). In fact, 

all studies performed on settlement showed the strong effect of location on the variability 

of larvae arriving to the shore, while site was never a significant source of variation. 

Jenkins et al. (2000) also found high levels of spatial variation when looking at settlement 

of barnacles, but in that study the highest variation was found at the largest spatial scales. 

Pineda et al. (2002) found that there were consistent differences in barnacle settlement at 

sites one kilometer apart. Keasing et al. (1993), when investigating echinoderm 

settlement on coral reefs, found high variability in settlement at very fine scales (meters), 

rather than at hundreds of meters (where distribution of larvae was more homogenous). 
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Usually, the spatio-temporal variability of settlement has been attributed to post-

settlement mortality, in other words differential mortality on the shore due to competition, 

predation or dislodgment. However, the supply and the differential arrival of larvae are 

also very important components influencing the final size of intertidal populations 

(Keough & Downes, 1982; Minchinton & Scheibling, 1991). In particular, it seems that, 

when settlement or recruitment rates are high, post-settlement processes determine the 

population structure (Connell, 1985; Minchinton & Scheibling, 1991); while, when 

settlement is low, the final adult abundance is influenced by spatio-temporal variation 

(Minchinton & Scheibling, 1991). 

Few studies on mussel settlement have been carried out on the coast of South Africa and 

most have been in different areas of the east coast (Lasiak & Barnard, 1995; Lawrie et al., 

in prep; Bownes & McQuaid, pers. comm.). The results have been quite different in terms 

of abundances, and the main reason for such variability has been regarded as due to 

geographical differences. As it has been shown from the present study, variability in 

abundance occurs on scales of a few hundreds of meters. Therefore, it should come as no 

surprise that areas that are hundreds of kilometers apart, that may be on the open coast or 

in bays, and especially that show different biogeography, show different levels of settler 

abundance (Harris et al., 1998).  

Active behavioural choice of substratum has not been demonstrated for mussels. 

However, the choice of settlement spots could dramatically influence the survival of the 

organisms. In fact, locations, and even finer spatial scales where settlement occurs, are 

very important because they determine the environmental conditions that the larvae will 
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experience and whether they will eventually survive to become juveniles and adults 

(Hurlbut, 1991). On very fine spatial scales (cm to µm), the specific topography of the 

substratum (like crevices and pits) can enhance or decrease the survival of sessile 

organisms after settlement (Walters & Wethey, 1996). 

 

Temporal variability 

In addition to spatial components, the other main factor that influences variation in 

settlement is temporal variability. Measuring spatio-temporal variation through a 

hierarchical design is one of the best ways to investigate variability in settlement, which 

is otherwise difficult to measure in a quantitative and absolute way (Jenkins et al., 2000). 

Looking at temporal variability in settlement of marine invertebrates is important because 

time and space influence and regulate recruitment to the adult population and, therefore, 

these processes can help us understand the determination of the size and distribution of 

the final population. 

The number of studies that have looked at temporal variability of settlement of intertidal 

organisms is considerable (for example: Rojas, 1969; Acuna, 1977; Roberts et al., 1991; 

Caceres et al., 1993; Lasiak & Barnard, 1995; Buchanan & Babcock, 1997; Hunt & 

Scheibling, 1998; Balch & Scheibling, 2000), but only a few have looked deeply at 

different temporal levels and tried to determine which scales most influence the 

variability of settlement (Bertness et al., 1996; Hunt & Scheibling, 1998). 

Another consideration is that different scales of investigation also help in optimising the 

method for the study of a specific process in a particular species. In the case of 
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settlement, sampling interval should be kept as short as possible because even fine-scale 

time intervals can influence estimates of settlement rates very distinctively (Minchinton 

& Scheibling, 1993; Pineda, 2000). Connell (1985) considers that the sampling interval 

closest to the ideal would be daily collections in order to minimise the loss of larvae that 

could detach and reattach over a certain period. In addition, it should be considered that, 

if collectors are left on the shore for a long time, the risk of predation, mortality, 

migration or more generally dislodgment, could influence estimates of abundances, 

usually resulting in underestimation. For example, Tankersley et al. (2002) showed that 

cumulative settlement of megalops larvae in collectors sampled at one-hour intervals was 

higher than settlement on collectors left in the water overnight. Nevertheless, it can also 

happen that long term colonisation (over the full period of study) is similar to 

accumulated short-term colonisation, for example, cumulative daily collections (Hunt & 

Scheibling, 1998). 

Temporal variability was measured in this study at different scales, in order to see if 

variability of settler abundance varies more on coarse scales, such as seasonal, or lunar 

cycles or on finer scales, like tidal or daily cycles. Time was a very important factor in 

determining variability of larval abundance in almost all the analyses. In addition to time 

as a main factor, much of the variability of settler/recruit abundance was due to the 

interaction between time and the smallest spatial scale investigated here, location. This 

result again highlights the obvious importance of temporal variability in this type of 

study, and also the importance of synchrony of settlement between sites. In fact, most of 

the peaks of settler abundance occurred on the same dates at both sites and at most 

locations, even though the actual abundances differed amongst locations. Apart from 
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spawning cycles, the reasons for such high temporal variability can be found, again, 

partly in hydrodynamics (Jenkins et al., 2000). Large temporal scales can influence 

currents, so that there can be seasonal patterns in water movement: currents can change 

from one month to another, on a seasonal basis. As in the case of spatial variability, local 

hydrodynamics influence temporal variation too, affecting, on fine scales, the arrival of 

larvae on the shore (Gaines et al., 1985). For example, certain localities may experience 

settlement at certain times, but not even seconds, minutes or hours later, when the water 

may be calmer, changes in sea levels could have occurred or the state of the tide could 

have changed (Pineda, 2000).  

When looking at barnacle settlement, parameters such as water temperature, salinity, 

availability of food, illumination, reproductive output, mortality rates, presence of 

conspecifics, algal cover, and the presence of biofilm should be considered. All these 

factors change at different temporal scales and could therefore also influence the 

differential arrival of larvae (Gaines et al., 1985; Hills & Thomason, 1996). It has also 

been shown that changes in salinity, light and turbulence of water trigger a behavioural 

response in crab settlement. Megalops larvae remain swimming during flooding of the 

tide at night, while they settle just before low tide, when turbulence declines (Tankersley 

et al., 2002). Tidal amplitude can also control settlement of megalops larvae in a 

Mozambican mangrove system (Paula et al., 2001).  

In the present study, the effect of tide (meaning the days prior to and immediately 

following spring tide) was investigated, but sampling was done only close to spring tide 

to observe whether tidal amplitude around the spring cycle would influence the settlement 
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of Perna. The results were negative, probably because the differences in tidal range were 

minimal in this particular case.  

Looking at seasonal collections, there were distinct peaks in larval abundance throughout 

the 16 months of study and within this period of high numbers of larvae, variability was 

specifically determined by the phase of the moon, with more larvae settling at new rather 

than full moons. However, it appeared that moon by itself did not significantly influence 

the rates of settlement. This lack of a moon effect, as a main factor, could have been 

because of clouding by the interaction between time and moon. In fact, it appeared that 

there was a strong influence of the moon only when there were peaks in larval abundance 

and only at specific locations. From these results it seems that the spatial and temporal 

factors examined become relevant in explaining settlement variability only when rates of 

settlement are relatively high. 

The influence of lunar cycle on settlement of intertidal invertebrates has been suggested 

by other studies, but for some of them the influence of the moon probably reflects the 

influence of the tidal amplitude as flood tides are expected to be around a particular phase 

of the moon (Reyns & Sponaugle, 1999; Paula et al., 2001). It has been shown that lunar 

cycle also influences the settlement of barnacles. Nevertheless, although temporal 

variability alone is generally very important for understanding settlement, the behaviour 

of some species could be triggered by physical or biological factors that vary periodically 

(Pineda, 2000). Finally, the influence of time on fine scales was clearly shown in one of 

the daily collections in the present study. Variability in larval abundance was very high 

with settler rates changing sharply form one day to the next. 
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This last result indicates that on this coast, the intertidal system is extremely 

unpredictable with respect to settlement rates and emphasises the importance of a short 

interval sampling design if one wishes to detect differences in settler abundance as this 

changes over very fine scales of time and space. 
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Chapter 4 

Coupling of larval availability and settlement of Perna perna 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

         “Anyone who has never made mistakes 
               has never tried anything new” 
                                             Albert Einstein  
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Introduction 

In several studies it has been observed that the abundance of pelagic larvae and of settlers 

could certainly influence the final size of the adult population (Connell, 1985; Hurlbut, 

1991; Pulfrich, 1996; Stoner & Davis, 1997; Mariani et al., 2000; Pineda, 2000; Beukema 

et al., 2001; Norkko et al., 2001; Drouin et al., 2002; Lipcius & Stockhausen, 2002; 

Pineda et al., 2002; Harii & Kayanne, 2003; Jeffery, 2003).  

In particular, it is very important to look at possible relationships between the above 

mentioned life stages and the possible effects of larval availability and settlement on the 

adult population. In fact, it could be that links between larval availability and settlement 

could help to infer the population size and dynamics of the adults (Olson, 1985; Pineda, 

1991; Miron et al., 1995; Pineda, 2000; Ross, 2001; Satumanatpan & Keough, 2001).  

The ideal way to understand population dynamics of an intertidal species would be to 

quantify all different stages of the life cycle and to look at all possible relationships 

amongst these stages: from sexual maturity to spawning, from larval dispersal in the 

water column to final recruitment to the adult population. However, this seems 

unrealistic, as it is very difficult to follow and measure simultaneously all the phases of a 

life cycle, especially when allowing for spatial and temporal replication. Therefore, for 

the present study, only the relationships between two factors, involved in structuring 

intertidal populations, were inspected: larval availability and settlement (Harrold et al., 

1991; Hurlbut, 1991; Minchinton & Scheibling, 1991; Jeffery & Underwood, 2000; 

Olivier et al., 2000; Pineda, 2000; Pineda et al., 2002). 

The combined design of the studies discussed in chapters two and three allows us to 

examine possible relationships between the numbers of mussel larvae collected from the 
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water column and the numbers of settlers found on the rocks. In fact, dispersal of Perna 

perna larvae, on the south coast of South Africa, appears to be unexpectedly limited in 

space (McQuaid & Phillips, 2000). So, it could be that larvae collected from the water are 

retained relatively locally and that the larvae collected from the rocks would originate 

from comparatively local larval stocks (Pulfrich, 1997; Stoner & Davis, 1997; Poulin et 

al., 2002; Zeidberg & Hammer, 2002). Certainly, the relatively fine scales used in this 

study should allow the identification of coupling (Hunt & Scheibling, 1998) between 

larval availability and settlement. So, we could expect to find a correlation between 

abundances of Perna perna larvae in nearshore waters and of settlers collected on 

adjacent intertidal stations. 

 

Materials & Methods 

Coupling patterns between larval availability of Perna perna in the water and settlement 

on the rocks were investigated.  

The data used to examine possible relationships between the amount of larvae in the 

water and the abundance of settlers on the shore, were the same as the ones used for the 

larval availability (see chapter two) and the settlement (see chapter three) studies. Thus, 

only details of the statistical analysis description will be given. 

Statistical analysis: Possible coupling between the abundance of Perna larvae in the water 

column and settlers on scouring pads was investigated by performing correlation analysis 

between the two factors. For this study, seasonal and daily abundances of larvae in the 

water were correlated with the abundances of settlers for the same daily periods and 

 106



  

likewise for seasonal data. In addition to this, the data collected on larval availability and 

settlement (analysed in chapters two and three), were plotted against each other for each 

study respectively (seasonal, daily 2000, daily 2001) (Figs.1 to 3).  

For each temporal survey, the means of larvae collected at the two sites, High Rocks 

(HR) and Kenton (KE) were plotted and the correlation coefficients (r) were calculated. 

The package used for the statistical analysis was Statistica 6.0 (Statsoft). 

 

Results 

From the analysis of data performed in chapters two and three, a strong influence of 

location (fine spatial scale) was observed for settlement, but not for larvae in the water 

column. Therefore, at first, the mean of larval abundance from the three locations at each 

site was calculated. This was plotted against the numbers of settlers at each location at the 

same site. This did not show any obvious relationships. Secondly, since no spatial effect 

was observed for the larval availability study, the mean of larvae at each site was 

calculated, plotted and correlated against the mean of settlers at each location, and also at 

each site. This also did not show any correlation and the results of this analysis will not be 

shown in this context. Therefore, for each study, the mean of all three locations at each 

site was calculated for the larvae in the water and for the settlers on the pads and these 

values were correlated.  

The plotting and analysis of data clearly showed that there was no correlation between 

larvae in the water and settlers arriving ashore. The graphs plotted from all three studies, 

but especially from the seasonal and the daily 2001 surveys, showed a complete lack of 

correlation (Figs.1 to 3). 
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The correlation coefficients for all three studies were very low and none were significant 

(Table 1). 

The raw data indicated that the lack of correlation was not due to a lag effect and cross-

correlation or lag analysis was clearly unwarranted. 

 
Table 1 Correlation analyses for seasonal, daily 2000 and 2001 data. r = correlation coefficient; p 
= probability value. See text for detailed description of the analyses. 
 
 
 

 

Seasonal correlation 2000 Daily correlation 2001 Daily correlation 

r p r p r p 
-0.08 0.73 0.37 0.20 0.21 0.44 
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Discussion 

 
The problem arising from external fertilization in open populations, such as sedentary 

intertidal marine organisms with planktonic larval stages, is that the possible scales of 

dispersal of larvae may vary widely (Roughgarden et al., 1985; Norkko et al., 2001; Van 

Dover et al., 2001; Poulin et al., 2002). Larvae can potentially disperse over large 

distances (Widdows, 1991), but it has been demonstrated that longshore dispersal in the 

majority of mussel larvae on the south coast of South Africa is relatively limited, with 

most larvae dispersing over scales of less than 10km (McQuaid & Phillips, 2000). 

Therefore, it could be expected that local populations of larvae in the water column will 

serve as stocks for local settlement onto local adult mussel beds (Van Dover et al., 2001). 

To investigate this issue, the present study was designed in such a way that intertidal 

stations for the settlement study were physically opposite offshore stations for the larval 

availability survey. However, the number of larvae collected at the nearshore stations did 

not correlate with the abundance of settlers on the adjacent intertidal locations. From 

these results it emerges that, on scales of hundreds of meters (locations were in fact about 

300 meters apart and 500 meters offshore), there is no direct coupling between mussel 

larval abundance in the water and settlers on the rocks.  

Considering only the spatial scales that have been examined in this study, it could be that 

the settlers collected from a particular location arrive from a source of larvae in the water 

column not directly opposite the intertidal locations. Dispersal and delivery of larvae 

would act on scales greater than one kilometer. It appears that the dynamics of water 

movement and larval transport and delivery are the only explanation of why larval
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availability and settlement were not coupled, especially if we accept that mussel larvae 

are transported in the water as passive particles (Bourget, 1988; Harvey et al., 1995; 

McQuaid & Phillips, 2000; Ross, 2001). It seems that water currents have a major role in 

the transport and delivery of larvae from the water column to the shore, at least on scales 

of hundreds of meters. 

A different explanation for this uncoupling of larval abundance and settlement could be 

sought in the time scales used in the study. In fact, the abundance of larvae in the water 

probably could have been correlated with the amount of settlers on the rocks at temporal 

scales different from the ones investigated in this study. The time scales sampled in the 

present study could have hidden correlations between dispersal and settlement. Indeed, 

sometimes the lack of correlation between larval abundance and settlement could derive 

from sampling problems during quantification of processes. Over or underestimation of 

patterns could be the real reason for lack of correlation, especially if the distribution of 

larvae is patchy (Pineda, 2000), as is the case for Perna perna larvae (McQuaid & 

Phillips, 2000). 

 The examination of correlations was done on a relatively large temporal scale, through 

fortnightly collections, and on a much finer scale, using daily collections from 2000 and 

2001. There is reason to believe that there could be a methodological problem especially 

for the large time scale in the sampling of larval availability. Perhaps larvae in the water 

could have arrived to the adjacent intertidal locations at intervals that were not considered 

in this study. For example, it could be that peaks in abundance of larvae in the water were 

overlooked due to the timing of the sampling. However, the daily collections should have 

 113



  

given more precise information on the possible presence of larvae in the water column, 

since the samples were collected every day and the chances of missing pools of larvae 

coming from local sources would have been much reduced. Nevertheless, even the daily 

scale could have been an insufficiently precise measure of coupling if the abundance of 

larvae in the water column was determined by short-term effects such as tidal or day/night 

cycles. Also, a very fine-scale sampling design would not help with the precision of 

measurements if one considers again the natural patchiness of larvae in the water column 

(McQuaid & Phillips, 2000). 

The potential methodological problem that arises from the choice of temporal scales in 

this study seems to be less relevant for the way settlement was investigated. In fact, 

settlement integrates information on collection of data over time, while larval sampling is 

instantaneous, even with replicated sampling (Pineda, 2000). In addition, in this study 

artificial collectors were left on the shore between one tidal cycle and the next, during the 

fortnightly survey. Therefore, the collection of data was integrated in time. One could 

argue that some larvae could be lost if the pads were left on the shore for several days 

(Pineda, 2000). Nevertheless, most of the larvae would actually remain attached and pads 

should give a good measurement of the settlement that had occurred on a stretch of rocky 

shore, during a particular time interval (McQuaid, pers. comm.; Lawrie et al., in prep.). 

Very fine-scale sampling procedures could be the answer to this problem (Pineda, 2000).  

Collecting samples at fine spatial and especially temporal scales could help in identifying 

the real patterns of distribution and therefore, give a more realistic and clear indication of 

coupling of larval availability and settlement. For example, broad sampling time interval 

 114



  

seems to be the main reason for uncoupling of larval abundance and settlement in a study 

of distribution of larvae of Concholepas in Chile by Poulin et al. (2002).  

However, a better approach to sampling in such a variable system, would be an integrated 

sampling design allowing the recording of larval abundance in the water through a period 

of time. Integration of larval abundance measurement over time could be achieved by 

using intertidal traps and/or nets left in the water for a pre-determined period of time. 

Intertidal traps were tried in the present study, using traps based on models from Setran 

(1992) and Castilla & Varas (1998). However, the intense sand movement and the wave-

exposed nature of shores in the study area made the use of the intertidal traps impossible 

as they became completely clogged very quickly. Also, plankton nets could not be set and 

used in nearshore waters because of the absence of calm seas during the present study. 

Larvae, especially when transported in the water, are part of a very patchy and extremely 

variable system (McQuaid & Phillips, 2000; Natunewicz & Epifanio, 2001). One of the 

main sources of variability for larvae in the water and arrival at the shore is the 

hydrodynamics of water currents, so that coupling, or its absence, depends strongly on 

this factor (Pineda, 2000). Therefore, when investigating processes like dispersal and 

settlement on a particular stretch of coast, preliminary and relatively broad investigations 

should be carried out to gain an understanding of the main patterns that generally affect 

these processes. At the same time, scales of investigation should be kept as fine and 

integrated as possible. 

The complexity of this system is so high that studies such as this one are rather 

uncommon. There are in fact, few investigations that have tried to link different steps in 

the life cycle of marine invertebrates with their pelagic larval stages (barnacles and 
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ascidians: McGuinness & Davis, 1989; Jenkins et al., 2000; ascidians: Hurlbut, 1991; 

barnacles: Gaines & Bertness, 1992; annelids: Verdier et al., 1997; ascidians, barnacles, 

bryozoans, hydrozoans: Walters & Wethey, 1996; echinoderms: Balch & Scheibling, 

2000). In particular, fewer studies have inspected the factors, relationships or variables 

that regulate the passage of invertebrate larvae from nearshore waters to the intertidal 

adult habitat (Gaines et al., 1985; Pineda, 2000; Satumanatpan & Keough, 2001; Lipcius 

& Stockhausen, 2002; Pineda et al., 2002; Lawrie & McQuaid, in prep.).  

Also, those few studies that have looked at possible relationships between larvae in the 

water and larvae arriving the shore have found that these processes were generally 

uncoupled. For example, Pulfrich (1996) found that the arrival of mussel larvae on 

Wadden Sea rocky shores did not match with either the breeding cycle of the adults or 

with larval abundance in the water column. Also, Miron et al. (1995) have looked at 

possible relationships between the distribution of barnacle larvae at different depths and 

settlement at three different levels on the shore. Positive correlation was found only 

between the numbers of larvae in bottom waters and the larvae settling on the low 

intertidal. When looking at relationships between larval availability and recruitment, 

rather than settlement, post-settlement mortality may be a major reason for uncoupling of 

processes (Ross, 2001). 

One of the few studies in which positive correlation has been observed between cyprid 

availability in the water and settlement of barnacles on the rocks was by Minchinton & 

Scheibling (1991). They also found that settlement was a positive function of recruitment 

and adult density. In fact, about 80% of variation in recruit and adult density was 

explained by the numbers of settlers. Lopez et al. (1998) found negative relationships 
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between the abundance of echinoid larvae and their recruitment in those years when many 

larvae were collected, indicating that, in this case, mortality of larvae was density-

dependent. 

The present study considered temporal scales in such a way that the product of 

consecutive spawning episodes could be detected, through fortnightly sampling, as 

mussel larvae are expected to spend up to three weeks in the water column before settling 

on the rocks (Widdows, 1991; Pulfrich, 1997). Also, the daily 2000 and 2001 samples, 

lasting three and five weeks respectively, should have allowed the detection of coupling 

between availability of larvae and settlement, assuming, again, that larval stages in the 

water become competent after approximately three weeks (Pulfrich, 1997). 

 In conclusion, considering both relatively large and fine scales, the present study has 

given a realistic view of the spatial and temporal dynamics that control Perna perna 

larvae in the water and their arrival to the shore, indicating that no correlation existed. 

The lack of correlation between availability of larvae in the water and settlers on the 

shore could be due to two main factors. One reason for the lack of correlation could be 

the mentioned methodological problem regarding the sampling precision and also the lack 

of integration of larval data. Secondly, the lack of correlation between larval and settler 

abundances could be due to differential delivery of larvae arriving from nearshore 

sources. Differential delivery would impose a differential and therefore, uncorrelated 

distribution of individuals in the water column and on the shore. 
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Chapter 5 

Effect of wind on settlement of Perna perna  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                        “Contrariwise- continued Tweedledee- if it was so, it might be,   
                                                      and if it were so, it would be; but as it isn’t, it ain’t.  
                                                                                 That’s logic!” 
                                                                         Lewis Carroll 
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Introduction 

 
Many studies on the dispersal of invertebrate pelagic larvae and their arrival on the rocky 

shore have suggested wind as a possible influence (Pineda, 1991; Bertness et al., 1996; 

Wing et al., 1998; Roman & Boicourt, 1999; Pineda, 2000; Natunewicz et al., 2001; 

Norkko et al., 2001; Poulin et al., 2002; Barnay et al., 2003). For example, it has been 

shown that settlement of megalops larvae in estuaries occurs in pulses and that these 

pulses follow wind events (Natunewicz & Epifanio, 2001). In this particular case, the 

transport of larvae was suggested to be wind-driven, with northward winds spreading 

larvae offshore and affecting the size of larval patches (Natunewicz & Epifanio, 2001). 

Shanks (1998) also suggested that the transport of megalops larvae of Penaeus and Uca 

was affected by wind-driven surface currents. Poulin et al. (2002) noticed that larvae of 

the gastropod Concholepas concholepas, in Chile, were retained between the shore and 

the nearshore waters (< 5 km from the coast) due to alternating events of upwelling (when 

larvae were moved offshore) and relaxation (when larvae were brought back close to the 

shore). Raimondi (1990) suggested that the highest settlement peaks in barnacles occurred 

following days of strong winds and before the maximum high tides. In particular, he 

observed that an increase in wind the day before settlement would move larvae onshore, 

favouring delivery and settlement. 

On the coast of South Africa it has been observed that inshore currents are wind forced 

(Schumann et al., 1988; Schumann 1989, 1999; Goschen & Schumann, 1994). In 

particular, the influence of wind on surface currents is direct, while the effect of wind 

decreases below the surface (Field et al., 1980). Field et al. (1980), when investigating 
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the effect of wind on nearshore surface currents in the Benguela system, showed that, at 

11m depth, currents were related to the strength and direction of the wind over the 

previous 36 hours. 

However, most investigations on coastal current circulation on the south coast of South 

Africa have been limited to Algoa Bay (see Fig.1, chapter 2). Current patterns and the 

influence of the wind may change on very fine spatial scales, especially in the nearshore 

waters where local variability of the coastal and bottom topography are important (Field 

et al., 1980; Goschen & Schumann, 1988). In addition to this, the action of wind, internal 

waves and tides and, on this coast, the Agulhas current, can have different effects in bays 

and on the open coastline (Goschen & Schumann, 1988; Pineda, 2000). For example, 

Goschen & Schumann (1988) found that the influence of wind is reduced on the open 

coast just outside the eastern end of Algoa Bay, compared to within the Bay itself. 

Conversely, the effect of the Agulhas current is greater outside Algoa Bay, than in the 

Bay (Goschen & Schumann, 1988). 

Despite the importance of wind effects on pelagic larval transport and delivery, the 

number of studies on the relations between local wind patterns and larval transport and 

delivery is very limited in South Africa. Moreover, most of these studies have been 

restricted to the examination of dispersal, transport and retention and settlement 

mechanisms of the ichthyoplankton, especially of commercially important fish species 

like sardines, mackerel, anchovies, pilchards and soles (Beckley & van Ballegooyen, 

1992; Boyd et al., 1992; Mann, 1992; Olivar et al., 1992; Roy et al., 1992; Villacastin-

Herrero et al., 1992; Tinley et al., 1997; Hutchings et al., 1998). Such larvae are less 

likely to behave as passive particles than those of invertebrates. Hutchings et al. (2002) 
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have considered the strong currents around the Southern African coastline as a potential 

risk for offshore dispersing planktonic eggs and larvae from broadcast spawners, 

especially pelagic, demersal and inshore-dwelling fishes. Boland (1997) has suggested 

that the geographic differences in adult barnacle abundance between the south and west 

coasts of South Africa could be due to pre-settlement processes. Larval transport would 

be regulated by onshore winds on the south coast and offshore wind-driven currents on 

the west coast, leading to a differential distribution of larvae along the two coasts 

(Boland, 1997). 

In general, very few studies have examined the distribution of invertebrates in nearshore 

waters (Barange & Boyd, 1992). Even fewer have explored the relations between the 

processes that influence the population dynamics of benthic species and wind-forced 

currents (Commito et al., 1995; McQuaid & Phillips, 2000).  

Providing evidence of the relationships between physical and biological processes 

becomes very important especially when trying to estimate, predict or simply to 

understand the final size of benthic populations. For example, mathematical models have 

been applied to predict the recruitment of the annelid Owenia fusiformis in the Gulf of 

Lyon, France. In this case, larval dispersal and recruitment were dominated by wind-

driven currents. In particular, the simulations indicated that different proportions of larvae 

would be lost depending on the wind climate; 60% of the larvae reached adults habitats 

during maximum downwelling events as opposed to only 15% during upwelling events 

(Verdier-Bonnet et al., 1997). Therefore, clarification of the relationships between wind 

patterns and settlement rates of a species such as Perna perna, is very important in order 

to understand and predict population dynamics and distribution. 
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Materials & Methods 

In this study possible relationships between wind direction and settlement rates were 

considered. During this study, the data analysed for settlement were taken from the 

fortnightly seasonal pad collections completed during the settlement study (chapter three). 

The mean numbers of settlers collected at each location during the fortnight full spring 

tides were considered. The average of all locations was then calculated and used for 

correlation analysis in association with the wind data. 

Hourly records of wind direction and speed were taken from the Port Alfred weather 

station (about 30 km from the study sites), for March 2000 to June 2001. 

The wind records were initially divided into four main directions, NE, SE, SW and NW, 

the predominant winds in this area. However, since the rocky shores of both Kenton-on-

Sea and High Rocks are south east oriented, only offshore and onshore winds were 

considered in the analysis for purposes of plotting. Southeasterly winds were considered 

onshore while the northwesterly winds were regarded as offshore. Also, the other two 

directions of wind (NE and SW) made a low contribution to the annual and seasonal wind 

patterns. 

At first, the hours for which the wind had blown in one of these two main directions were 

summed up for each month. The total hours of southeasterly winds in each month and the 

total hours of northwesterly wind were plotted against the fortnightly means of settlers. 

 Because surface water currents, and the particles carried with them, can change direction 

quickly and the maximum influence of the wind on surface water currents is given by the 

wind during the previous 36, 24 and 12 hours (Field et al., 1980), the total hours of wind 

blown in each of the considered directions were calculated for 12 and 24 hours previous 
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to the collection of pads for the settlement counts. Settlement data, for each fortnightly 

collection, were plotted against the corresponding 12-hour totals of southeasterly and 

northwesterly winds. The correlation analysis was performed using the Statistica 6 

software package.  

 

Results 

Preliminarily, correlation was run to examine the effect of wind on daily 2000 and 2001 

settler abundance. However, since this analysis did not show even the most tenuous 

relationship, these results are not going to be discussed here.  

The relations between northwesterly, southeasterly winds, time of the year as a circular 

variable and fortnightly means of settler abundance were initially determined by using 

partial correlation. Partial correlation considers the relation between two parameters 

holding others constant. Vectors calculated from the wind direction and speed were also 

considered and used for partial correlation analysis. However, no significant results were 

observed from any of these analyses and, therefore, the results of the partial correlation 

are not shown here. 

The examination of possible relationships between the abundance of settlers in the 

scouring pads and the direction of the main offshore and onshore winds was particularly 

difficult, and probably biased, for one main reason: the abundance of settlers arriving at 

the shore was very low throughout almost the entire sampling period. Therefore, possible 

negative or positive correlations between settler abundances and wind direction would not 

have been easy to show. Nevertheless, a possible relationship between wind and settlers 

can be observed when plotting the mean of seasonal settler abundances against, 
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respectively, the sum of southeasterly and northwesterly winds blown during the month 

previous to the pad sampling (Fig.1). 

Settlers seemed to be most abundant when northwesterly winds dropped and 

southeasterly onshore winds intensified (Fig. 1). This coincided with the start of spring 

and continued for the whole summer. Westerly and easterly winds follow seasonal 

fluctuations, with west winds prevailing throughout the year, but dropping during 

summer, from October/November to March (Hunter, 1981; Schumann et al., 1991; 

Schumann, 1999; Fig. 1). On the other hand, the maximum duration of easterly winds is 

recorded during the summer months (Schumann et al., 1982; Phillips, 1994).  

When examining the relationship between the fortnightly means of settler abundance and 

the sum of southeasterly winds in the 12 hours previous to sampling, no significant 

correlation could be detected (Table 1). However, plotting of the data suggested a positive 

relationship between the two variables. Whenever southeasterly winds were minimal, or 

had just started blowing, settler abundance increased. It seems that the onset of 

southeasterly winds may enhance the number of settlers (Fig.1). Therefore, although the 

number of settlers was generally low, there was a slight (non-significant) positive relation 

between these winds and the abundance of settlers (Fig. 2). 

Figure 1 suggests that, as the duration of offshore northwesterly winds increased, there 

was a decrease in the number of settlers, while an increase in settler abundance followed 

periods during which this wind was not as dominant. A weak negative relation between 

northwesterly winds and settler abundance can be detected, although this is biased by a 

single point (Fig.2). On a seasonal basis, it appeared that when the northwesterly winds 

prevailed (winter months), the abundance of settlers was very low, while maximum 
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numbers of settlers were collected in the pads when these winds almost reached their 

minimum (27 December 2000; see Fig.3, chapter three). Nevertheless, these possible 

patterns were extremely weak and correlation analysis showed no significant relationship 

in either case (Table 1). 

 
 
Table 1 Correlation between wind direction and settler abundance. r = correlation coefficient; p = 
probability value. 
 

Correlation SE winds vs. settlers Correlation NW winds vs. settlers 

r p r p 
0.18 0.36 -0.13 0.49 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 125



 

 

 

126 

0

10

20

30

40

50

60

Mar-00 May-00 Jun-00 Aug-00 Oct-00 Nov-00 Jan-01 Feb-01 Apr-01

Date

Settlers
SE wind
NW wind

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                   Fig. 1 Northwesterly (NW) and southeasterly (SE) winds and settler abundance. 
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                       Fig. 2 Scatter diagram of wind (SE top; NW bottom) and settler abundance. 
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Discussion 

The influence of wind on surface currents, larval transport and settlement of invertebrates 

is likely to be very important. In fact, unless larvae are deep in the water, hydrodynamics 

are amongst the main factors affecting the arrival of larvae on the shore, determining 

settlement spatial variability and, therefore, giving shape to the final adult population size 

and distribution (Gaines et al., 1985; Raimondi, 1990; Gaines & Bertness, 1992; 

Bertness, et. al. 1996).  

In the case of mussels, the effect of wind on larval delivery should be relatively easy to 

detect because larvae, initially dispersed in the water column, are transported like passive 

particles. Therefore, the direct action of wind on surface currents can limit larval dispersal 

and influence the delivery of larvae to the rocks (Phillips, 1994). 

Since the sites used for the present study were southeasterly oriented, the dominant winds 

considered here were onshore and offshore winds, on the sea-land axis, rather than 

longshore winds. It has been suggested that the biggest changes in wind direction and 

speed occur on the sea-land axis, while the local coastline and topography also add 

variation to the wind patterns (Jury & Guastella, 1987; Schumann et al., 1991). 

In this study, relationships between wind patterns and settlement were difficult to detect 

mainly because of the low numbers of settlers collected from the scouring pads 

throughout the whole survey. In fact, no clear evidence of any real relationships could be 

established in this case. Nevertheless, the results do suggest a possible trend of Perna 

perna settlement on the shore mainly when offshore northwesterly winds drop and 

onshore southeasterly winds increase. 
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Many investigations have examined the relationship between wind patterns and 

settlement, mostly of barnacles. These studies have often produced different results 

regarding the influence of onshore or offshore winds on larval settlement. For example, 

Shanks (1986) found no obvious relationship between settlement of barnacles and wind-

generated currents, while Hawkins & Hartnoll (1982) observed that the maximum 

settlement of barnacles occurred during onshore winds, or better, during onshore flow. 

Bertness et al. (1996) also confirmed the positive influence of onshore winds, when 

examining wind-driven patterns in barnacle settlement. In contrast, Bennell (1981) found 

a positive relation between settlement and offshore winds. Indirect evidence of the 

influence of wind on settlement and recruitment was also given by the onshore 

accumulation and delivery of larvae on a Californian shore, during periods of calm 

weather (Roughgarden et al., 1991). Blanton et al. (1995) also found that the maximum 

settlement of crab megalops larvae was reached during periods of calm winds. Lambert & 

Harris (2000) suggest that sea urchin larvae from the Gulf of Maine concentrate onshore 

during persistent onshore wind periods, when larval settlement reaches its maximum. 

In this study, the wind patterns observed followed the normal pattern of seasonal wind 

fluctuations in this area (Schumann et al., 1988; Schumann et al., 1991; Phillips, 1994).  

Phillips (1994) confirmed that on the south coast of South Africa the predominantly 

northwesterly winds of winter favour gametogenesis and spawning of mussels, while 

recruitment is enhanced by south- and northeasterly winds, which are more frequent from 

spring to autumn. Seasonal fluctuations in mussel spawning have also been observed in 

two other studies carried on this coast. Both studies confirmed that the main spawning of 

gametes occurred during the austral winter months, from May to September (Ndzipa, 
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2002; Lawrie & McQuaid, in prep.), when there are strong offshore winds and maximum 

localised upwelling (Schumann et al., 1982; Lasiak, 1986; Phillips, 1994). 

Obviously spawning seasonality is important. In fact, during the winter months, when 

spawning occurs, the probability of mussel larvae settling on the rocks is minimal. The 

problem is that, during the winter months, the absence of settlement could be due to two 

variables: wind and, or spawning. The low numbers of larvae collected during this study, 

from May to August, could be due either to the timing of spawning (Ndzipa, 2002; 

Lawrie & McQuaid, in prep.) or to the offshore winds that prevail during this time of the 

year (Schumann et al., 1988; Phillips, 1994). The prevalence of offshore winds in winter 

would transport larvae away from settlement sites. Alternatively, settlers could be missing 

from the shore in winter because spawning had just occurred, since after external 

fertilization, mussel larvae spend 3-4 weeks in the water column before becoming 

competent to settle. However, at the temporal scales that have been investigated in this 

study, no larvae were collected from the water column during winter. Therefore, it is 

more likely that offshore wind could have transported larvae over distances greater than 

500m. Alternatively, a possibility could exist that winter spawning was minimal or absent 

during the year of the study, but this aspect was not measured in this study.  

During the rest of the year, in particular during spring and summer, the predominance of 

onshore southeasterly winds increases, possibly resulting in larvae being transported 

ashore. The peak of settlement observed at the end of December 2000 could have been 

favoured by the slight increase of onshore winds. However, this interpretation, although 
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suggested from the plotting of settler abundances and wind data, is highly speculative as 

no significant correlation was recorded. 

In conclusion, it seems that the low numbers of settlers collected in the scouring pads 

during this study have probably masked the possibility of finding significant relationships 

between wind and settlement. 

In order to establish the possible effects of wind direction on the settlement of Perna 

larvae, further investigations would be necessary. These studies should probably be 

carried out in bays, to maximise the abundance of settlers, as settlement rates are usually 

higher in bays or harbours than on the open coast (Phillips, 1994; Archambault & 

Bourget, 1999; pers.obs; Bownes, pers. comm.). However, when examining the effects of 

wind on inshore larval transport and delivery, we should also consider the importance of 

the shoreline topography and the extreme variability of wind on very fine spatial scales 

(Xie & Eggleston, 1999). Wind does influence the surface and deeper water currents, but 

its direct effect is controlled and modified by the local topography, the sea-land interface, 

boundary layer structure and finally by the choice of sites where wind measurements are 

performed (Goschen & Schumann, 1988; Schumann, 1989; Archambault & Bourget, 

1999).
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Chapter 6 

General Discussion 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
          “ If we knew what we were doing, it  
                                                                                    would not be called research” 
                                         Albert Einstein
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Sexual reproduction through external fertilization is a very common strategy found in 

organisms living on land and sea, from plants, to many marine invertebrates, especially 

sessile and sedentary forms (Crisp, 1976). External fertilization often leads to high 

dispersal of gametes and zygotes or larvae. In the case of sedentary organisms, external 

fertilization also leads to settlement and recruitment of juveniles to the adult substrata 

(Bhaud, 2000).  

External fertilization, with the associated potentials for high levels of dispersal and the 

necessity for larval return to suitable substrata via settlement, leads to many evolutionary 

trade-offs. External fertilization involves both advantages and disadvantages. For 

example, in the case of the rocky shores and mussel populations, there is high mortality of 

gametes during spawning. Gametes can disperse rapidly in such a high wave energy 

environment and prezygotic selection is almost absent in mussels (Thorson, 1950; 

Underwood & Keough, 2001). Only few sedentary forms, like barnacles, copulate; many 

organisms do not show courtship behaviour and there is no barrier to gene flow due to 

incompatibility of genital organs, since no copulation occurs (Knox, 1963). Moreover, the 

eggs spawned by one female can mix with sperm released by different males. Therefore, 

the great disadvantage of external fertilization is that there is no individual selection for 

the best partner. This removes several potential barriers to hybridisation and also leads to 

potential loss of energy caused by the generally high rates of hybridisation failure.  

On the other hand, there are advantages to external fertilization. The most important and 

obvious are the greater chances of gene exchange and recombination in external fertilizers 

than in species with asexual or internal fertilization strategies (Stearns, 1993). To ensure 

fertilization success, especially in a variable environment like water, many species have 
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adopted synchronization of spawning, to increase egg and sperm encounters (Knox, 1963; 

Morgan, 1995; Morgan, 2001; Underwood & Keough, 2001). Among external fertilizers, 

including mussels, the only pre-zygotic barrier available to prevent hybridisation is 

incompatibility of the gametes. However, this type of barrier is not entirely effective since 

there are successful cases of mussel hybridisation. For example, Mytilus edulis and M. 

galloprovincialis, on the southwestern British coast, do hybridise successfully (Gilg & 

Hilbish, 2003). Nevertheless, Bierne et al. (2002) suggest that assortative selection and 

reduced hybrid fitness maintain and limit the mussel hybrid zone in Europe. 

Dispersal and settlement of larvae involve trade-offs too. Again, using mussels as an 

example, the biggest disadvantage is the high, unavoidable larval waste due to the 

mortality of the larvae while still in the water, or during their transport away from the 

shore (Thorson, 1950; Todd, 1985; Dame, 1996; Underwood & Keough, 2001). Because 

larval wastage cannot be avoided; it seems that the concept of “spreading the risk” 

proposed by Reddingius & den Boer (1970) applies. If larvae are retained, there is a risk 

of rapid disappearance of local populations whenever patches of adult populations are 

removed, due to physical or biological disturbance (Underwood & Keough, 2001). 

Yet, the largest evolutionary advantage is the gene flow that is guaranteed by larval 

transport and delivery (Scheltema, 1986; Strathmann et al., 2002). Since one of the main 

causes of adult mussel mortality is competition for space on the shore (Griffiths & 

Hockey, 1987), dispersal of larvae ensures the establishment and success of open 

populations. The adults will be far from their offspring and offspring will settle far from 

their siblings (Strathmann, 1974; Todd, 1985). Because of the pressures of intra- and 

interspecific competition for space, sedentary forms like mussels also need to maximise 
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their occupation of space and to exploit any empty areas available (Todd, 1985; Dame, 

1996; Seed et al., 2000). Dispersal guarantees effective occupation of space at different 

spatial scales (Crisp, 1976), while re-colonisation of empty patches after physical or 

biotic removal of adult population will also be faster than in closed populations 

(Underwood & Keough, 2001). 

The last major advantage of the reproductive strategy exhibited by mussels is the 

production of a long planktotrophic larval stage, able to feed while being transported in 

the water column (Bayne, 1976; Todd, 1985; Scheltema, 1986). This could be seen as a 

negative point for the development and survival of the individual itself, since the newly 

hatched larva, requiring a large amount of food, depends totally on extrinsic 

phytoplankton resources, and larval mortality rates in the water are very high (Thorson, 

1950; Todd, 1985; Lutz & Kennish 1992). However, it appears that within species, 

competition for food in the water column is not a restricting factor for planktonic marine 

larvae (Strathmann, 1996). In addition, planktotrophic larvae are energetically cheap to 

produce since the eggs contain a small quantity of yolk (Thorson, 1950).  

It seems rather that the main risk for mussel larvae is to be transported over large 

distances before returning to the settlement sites. Therefore, being able to provide food 

for itself and especially being able to delay metamorphosis (Thorson, 1950; Bayne, 

1976), if necessary, are effective adaptations in an environment where the unpredictable 

direction and strength of currents are amongst the main determinants of transport and 

delivery of larvae (Underwood & Keough, 2001). 

In addition to the evolutionary trade-offs associated with the reproductive and life 

strategies of mussels, there are also ecological trade-offs. For example, since there is little 
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or no behavioural influence on larval transport in the water column, or on larval delivery 

to the shore, it appears that dispersal and settlement are powerfully affected by abiotic 

factors, in particular, currents (McQuaid & Phillips, 2000). In fact, currents can control 

the scales of dispersal of larvae and individual survival rates. Balanced against this are the 

positive evolutionary effects of currents in terms of external fertilization, dispersal and 

settlement. In particular, the action and influence of abiotic parameters like currents on 

larval transport and delivery vary greatly at different spatial and temporal scales. The 

variability of currents can make dispersal and settlement of larvae even more 

unpredictable processes making the prediction of final population structure even more 

difficult.  

This study has confirmed the high levels of variability in time and space when examining 

the abundance of larvae in the water and of settlers on the shore. Temporal variability was 

particularly obvious in this study, both on large (seasonal, lunar phase and tidal) and finer 

(daily) temporal scales. Since the density of larvae varies so much in time, reliable and 

precise predictions of the presence or arrival of larvae cannot be made on this coast.  

Nevertheless, the summer season proved to be the period with the highest abundances of 

settlers. Different studies, performed on this stretch of coast, have demonstrated that the 

main mussel spawning time is during the winter months. However, the different studies 

have not agreed on specific months during winter (Lawrie & McQuaid, in prep; Ndzipa & 

McQuaid, in prep). The same seems to apply to the seasonality of larval settlement. The 

summer months have proven to be the preferred months for mussel settlement, but again, 

different studies show peaks of settlement during different months in this season (Lawrie 

et al., in prep; present study). 
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Summer appears to be an appropriate season for settlement, as the weather and water 

conditions are more benign than during the stormy and turbulent conditions typically 

encountered during the winter months. However, even in summer, hydrodynamic 

conditions in the southern hemisphere are probably less predictable than in the northern 

hemisphere (Dame, 1996).  

Many studies have shown the influence of the tidal and lunar phases on spawning, 

transport and delivery of pelagic invertebrate larvae (Eggleston et al., 1998; Jeffery & 

Underwood, 2000; Paula et al., 2001; Flores et al., 2002; Tankersely et al., 2002). This 

effect could be an additional mechanism for ensuring synchronisation of spawning, 

dispersal and settlement (Knox, 1963). Being transported simultaneously and, especially, 

being delivered together, could help larvae to reduce losses caused by predation, although 

it could also increase intraspecific competition. 

The present study does not show a clear positive relation between tidal or lunar phases 

and settlement. However, although the statistical analyses are equivocal, the data suggest 

that there is a certain synchronisation of settlement during the new moon phase.  

This could also be interpreted as a tidal effect, especially of tidal amplitude, on larval 

delivery. In fact, the settlement peaks for this study corresponded with new moon phases 

during the months of September, November, December 2000 and January, February 

2001. In almost all these cases, the tidal amplitude during these spring tides was relatively 

small, with maximum tidal height being rather low. This could appear to be problematic 

for colonisation of substrata, as small tidal amplitude would give larvae less chance to 

settle on the shore during maximum spring tides. On the other hand, smaller tidal 

amplitude could also mean relatively small turbulence, less wave impact at the delivery 
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sites and, thus, less risk of the newly settled larvae being removed by currents. However, 

this interpretation of the new moon influence on larval delivery is speculative since no 

statistically significant pattern was observed. Also, more work should be done, focusing 

not only on the study of the tidal influence on settlement and delivery, but also on the 

hydrodynamics of waves at very fine spatial scales that act directly on the delivery of 

larvae on the shore.  

Another factor that could have a strong impact on the delivery of larvae to the shore is the 

wind (Gaines & Bertness, 1992; Bertness et al., 1996; Forward et al., 1997; Natunewicz 

& Epifanio, 2001; Underwood & Keough, 2001; Flores et al., 2002; Tankersely et al., 

2002). The wind can show seasonal patterns in speed and direction and certainly this is 

the case for the south east coast of South Africa. Offshore winds dominate during winter, 

while onshore winds prevail in summer (Phillips, 1994; pers obs). Previous studies, 

carried out in this area, have shown that spawning of mussels occurs mainly during the 

winter months (Ndzipa, 2002; Lawrie & McQuaid, in prep.) when the prevailing winds 

are offshore. Therefore, gametes and larvae are likely to be transported offshore during 

this season (Phillips, 1994; pers obs.). 

In this study, wind did not seem to be strongly linked to the arrival of larvae onto the 

shore, though there was a tendency for settlement to occur during the onshore winds, 

characteristic of the summer (Fig. 1, chapter 5) when larvae are likely to be passively 

transported back to the shore.  

The measurement of dispersal of invertebrate larvae concerns the possible spatial scales 

over which larvae are transported in the water column. If the spatial scales of transport 

and delivery are known, predictions on the inshore larval distribution can be made and, 
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population structure could also be estimated indirectly (Underwood & Denley, 1984; 

Raimondi, 1990; Minchinton & Scheibling, 1991; Minchinton & Scheibling, 1993; 

Connolly et al., 2001; Morgan, 2001). 

This study shows clear spatial patterns of distribution, which differ for larvae in the water 

and settlers on the rocks. Larval distribution in the water column was not significantly 

affected by scales of a few kilometers (site scale), although differences in larval 

abundances were found between the two sites. Also, the availability of larvae did not 

show a significant location effect. However, location (scales of hundreds of meters) 

consistently showed significant effects on settler abundances. For example, the location 

KE B showed persistent maximum numbers of settlers during both daily settlement 

studies and the neap tide recruitment study. 

The effect of location on settler abundance highlighted differential delivery of larvae on 

the shore at scales of hundreds of meters. It may even be that differential delivery could 

act at smaller scales, with settler distribution being regular even on scales of meters, but 

this was not tested here. Adult mussel distribution on the shore is very irregular, varying 

between isolated patches of a few animals to large areas entirely covered with mussels. 

Wahl (2001) observed a very patchy distribution of organisms when examining 

variability of settlers of algae and blue mussels among replicates 50 meters apart. The 

patchiness, often encountered in adult populations, could reflect what happens on the 

shore during settlement. If larvae are delivered in a uniform way, without discrimination 

among settlement areas, post-settlement mortality would determine the final coverage of 

juveniles and adults on the shore (Knox, 1963; Underwood & Denley, 1984; Erlandsson 

& McQuaid, unpubl. data). Alternatively, larvae could show differential settlement with 
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settlement itself being highly variable at very fine scales (Underwood & Denley, 1984). 

de Vooys (2003) showed that chemical communication stimulates aggregation behaviour 

in adults of Mytilus edulis, but he also suggests that the same chemical cues used by the 

adults could also influence settlement. The possibility of settlement cues provided by 

juvenile or adult conspecifics was not considered during this survey, but it makes a very 

interesting topic for future studies on mussel settlement and its influence on final 

population structure. 

In order to understand better the scales of transport and delivery of larvae and to make 

possible predictions on the future of larvae and the structure of adult populations (Seed, 

1976; Underwood & Keough, 2001), dispersal and settlement should be assessed 

simultaneously (Suchanek, 1985; Underwood & Keough, 2001). Local studies on mussel 

larval dispersal suggest that the scales of transport of the majority of larvae are relatively 

limited (of the order of 10’s of kilometers; McQuaid & Phillips, 2000). However, the 

influence of factors like currents and wind can enhance these scales considerably. Large 

or increased scales of dispersal may not be advantageous for planktotrophic larvae and 

may lead to a great loss of larvae, because of advection away from suitable settlement 

areas (Palmer & Strathmann, 1981). Many studies of fish and invertebrates suggest larval 

retention, with various kinds of control retaining larvae relatively close to the sites of 

reproduction (Keough, 1988; Gaines & Bertness, 1992; Underwood & Keough, 2001). 

Sale (1991) suggests that it would be “safer” for coral reef fish larvae to settle “close to 

home” rather than far away, although variation in settlement rates, at fine spatial scales, is 

still observed due to the patchy distribution of adults on the reef. In general, we could, 
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therefore, speak of “ideal intermediate” scales of dispersal, where larvae are transported 

over distances that still guarantee successful settlement on the shore after a few weeks. 

 This study did not show any coupling between the abundance of larvae in the water and 

of settlers on the rocks. This observation reinforces the idea of the importance of the 

scales of larval transport and delivery as regulated by physical factors, especially by 

hydrodynamics. Although the results of this study do not provide direct insight on the 

scales of dispersal, we can see that larvae are transported over spatial scales that do not 

couple with the scales at which they are delivered to the shore. Being transported far, but 

not too far from the parental sites could be an advantage for the survival of the individual 

and the population as a whole. Mussels are still guaranteed good gene flow and are still 

able to re-occupy territories after disturbance or colonise new areas. They are also able to 

ensure the settlement of offspring far from their parents to avoid competition for space 

amongst related individuals. However, mussel larvae have no control over their transport 

in the water. If hydrodynamics are so important, this could explain the contrasting results 

from different studies. 

To conclude, this study, by examining the variation in larval availability and settlement of 

Perna perna larvae on a range of spatial and temporal scales, has highlighted the 

importance of those ecological components, especially hydrodynamics, operating at 

different steps of the life history and influencing the survival of individuals and the 

structure of the population. Larval availability and settlement are among those parameters 

that crucially regulate the distribution and abundance of marine mussel populations 

(Morgan, 2001; Underwood & Keough, 2001). The combined investigation of both larval 

availability and settlement has allowed us to understand the different spatial scales of 
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distribution of mussel larvae and settlers on this coast. In particular, through this design, it 

has been possible to determine the spatial scales of settlers arriving to the shore (hundreds 

of meters). It has also been possible to show that differential delivery of larvae, rather 

than differential distribution of larvae in water, determines the final distribution of 

settlers, and possibly of adults, on the shore. However, in addition to differential delivery, 

post-settlement mortality should also be taken into account when trying to understand the 

distribution of adult and the final size of the adult populations. The main findings of this 

study could be summarised in two conceptual models represented in figure 1. These 

models show two possible ways of structuring adult mussel populations from the point of 

view of differential spatial distribution of larvae in the water column or differential 

delivery of settlers on the shore. Adults on the shore are characterised by different 

population sizes (A or B in figure 1). The final size could be determined either by a 

different amount of larvae, distributed differentially in the water or by differential 

delivery, acting at settlement level. Both models should include a certain degree of post-

settlement mortality, which was not taken into account in this study. The model that best 

suits the results of this study is differential delivery, model number 2 (Fig. 1).  
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delivery
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in water

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 Conceptual models for mussel distribution on the shore. 1) Final population size 

determined by differential larval availability. 2) Final population size determined by 
differential settlement. A and B represent two possible adult population on the shore 
(scales hundreds of meters); Black lines represent the shoreline; circular bodies represent 
mussel larvae in the water; long bodies represent adult mussels on the shore. 

 

Final Summary and ideas for future research 

The spatio-temporal approach of this study has been fundamental to a deeper 

understanding of the variability of Perna perna larval abundance in the nearshore waters 

and their settlement on the rocks. 

First, the analysis of the spatial variability of larval and settler abundance has highlighted 

the importance of differential delivery of larvae from the water to the shore. This process 

seems to provide good support for what could be identified as spatial synchronisation, 

meaning the accumulation and assemblage of larvae towards the settlement substrata. 

The temporal aspect of the study has allowed an understanding of synchronisation of 

arrival on the shore, despite the strong variability in timing of larval abundance in 

nearshore waters. This suggests the importance of wind and lunar/tidal action on the 

delivery of Perna perna larvae. However, this aspect should be carefully tested using a 
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specific experimental design focused on the effects of tidal and lunar phases and on the 

precise action of the wind on the surface water currents. This last feature would require an 

understanding of local hydrodynamics and coastal water circulation patterns. 

Finally the lack of coupling between the abundance of larvae in the water column and 

settlers on the shore emphasises the fact that dispersal, under the influence of currents, 

determines the transport of larvae from nearshore waters to the shore. However, this 

process operates at different scales, depending on how far offshore the larvae are carried. 

In addition, even if past studies have proved dispersal to be limited to local scales, it still 

operates at scales that are at least larger than a kilometer. Nevertheless, future studies on 

the scales of dispersal and on the spatio-temporal relationships between dispersal and 

settlement should seriously consider a much finer temporal scale sampling design. The 

presence and abundance of larvae in the water is highly variable, but an intense and 

frequent sampling design could facilitate the interpretation of the coupling phenomenon 

and determine in a more accurate way the real scales of distribution of larvae while still in 

the water. To conclude, all these studies, dealing with the abundance and distribution 

patterns of invertebrate pelagic larvae in the water and their arrival onshore, should 

include knowledge of local hydrodynamic conditions, which have been claimed to be one 

among the most important causes of variability in terms of both time and space. 
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