7 research outputs found

    Calcium Signaling in Intact Dorsal Root Ganglia

    No full text

    Modulators of calcium influx regulate membrane excitability in rat dorsal root ganglion neurons

    No full text
    Chronic neuropathic pain resulting from neuronal damage remains difficult to treat, in part, because of incomplete understanding of underlying cellular mechanisms. We have previously shown that inward Ca2+ flux (I(Ca)) across the sensory neuron plasmalemma is decreased in a rodent model of chronic neuropathic pain, but the direct consequence of this loss of I(Ca) on function of the sensory neuron has not been defined. We therefore examined the extent to which altered membrane properties after nerve injury, especially increased excitability that may contribute to chronic pain, are attributable to diminished Ca2+ entry. Intracellular microelectrode measurements were obtained from A-type neurons of dorsal root ganglia excised from uninjured rats. Recording conditions were varied to suppress or promote I(Ca) while biophysical variables and excitability were determined. Both lowered external bath Ca2+ concentration and blockade of I(Ca) with bath cadmium diminished the duration and area of the after-hyperpolarization (AHP), accompanied by decreased current threshold for action potential (AP) initiation and increased repetitive firing during sustained depolarization. Reciprocally, elevated bath Ca2+ increased the AHP and suppressed repetitive firing. Voltage sag during neuronal hyperpolarization, indicative of the cation-nonselective H-current, diminished with decreased bath Ca2+, cadmium application, or chelation of intracellular Ca2+. Additional recordings with selective blockers of I(Ca) subtypes showed that N-, P/Q, L-, and R-type currents each contribute to generation of the AHP and that blockade of any of these, and the T-type current, slows the AP upstroke, prolongs the AP duration, and (except for L-type current) decreases the current threshold for AP initiation. Taken together, our findings show that suppression of I(Ca) decreases the AHP, reduces the hyperpolarization-induced voltage sag, and increases excitability in sensory neurons, replicating changes that follow peripheral nerve trauma. This suggests that the loss of I(Ca) previously demonstrated in injured sensory neurons contributes to their dysfunction and hyperexcitability, and may lead to neuropathic pai

    Restoration of calcium influx corrects membrane hyperexcitability in injured rat dorsal root ganglion neurons

    No full text
    We have previously shown that a decrease of inward Ca(2+) flux (I(Ca)) across the sensory neuron plasmalemma, such as happens after axotomy, increases neuronal excitability. From this, we predicted that increasing I(Ca) in injured neurons should correct their hyperexcitability. The influence of increased or decreased I(Ca) upon membrane biophysical variables and excitability was determined during recording from A-type neurons in nondissociated dorsal root ganglia after spinal nerve ligation using an intracellular recording technique. When the bath Ca(2+) level was increased to promote I(Ca), the after-hyperpolarization was decreased and repetitive firing was suppressed, which also followed amplification of Ca(2+)-activated K(+) current with selective agents NS1619 and NS309. A decreased external bath Ca(2+) concentration had the opposite effects, similar to previous observations in uninjured neurons. These findings indicate that at least a part of the hyperexcitability of somatic sensory neurons after axotomy is attributable to diminished inward Ca(2+) flux, and that measures to restore I(Ca) may potentially be therapeutic for painful peripheral neuropath

    Perioperative Genomic Profiles Using Structure-Specific Oligonucleotide Probes

    No full text
    Objectives: Many complications in the perioperative interval are associated with genetic susceptibilities that may be unknown in advance of surgery and anesthesia, including drug toxicity and inefficacy, thrombosis, prolonged neuromuscular blockade, organ failure and sepsis. The aims of this study were to design and validate the first genetic testing platform and panel designed for use in perioperative care, to establish allele frequencies in a target population, and to determine the number of mutant alleles per patient undergoing surgery
    corecore