90 research outputs found

    Lattice softening effects at the Mott critical point of Cr-doped V2_2O3_3

    Full text link
    We have performed sound velocity measurements in (V1x_{1-x}Crx_x)2_2O3_3 in the vicinity of the critical point of the first order Mott transition line. The pressure sweeps at constant temperature reveal a large dip in the c33c_{33} compression modulus, this dip sharpens as the critical point is approached. We do not observe signs of criticality on the shear modulus c44c_{44} which is consistent with a transition governed by a scalar order parameter, in accordance with the DMFT description of the transition. However, the amplitude of the effect is an order of magnitude smaller than the one obtained from DMFT calculations for a single band Hubbard model. We analyze our results using a simple model with the electronic response function obtained from the scaling relations for the conductivity

    Nanostructured Nb-substituted CaMnO3 n-type thermoelectric material prepared in a continuous process by ultrasonic spray combustion

    Get PDF
    One way to further optimize the thermoelectric properties toward a higher ZT is a temperature stable nanoengineering of materials, where the thermal conductivity is reduced by increasing the phonon scattering at the grain boundaries. To study this, Nb-substituted CaMnO3 perovskite-type material was synthesized by ultrasonic spray combustion (USC). The grain growth has been characterized by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Finally, the thermoelectric properties of compacted and sintered bulk samples from powder prepared by a continuous scalable USC process were measured up to 1050 K. The thermoelectric legs were prepared by an adapted sintering process. Here, a compromise between enhanced porosity to reduce the thermal conductivity and securing of mechanical stability and low resistivity should be obtained. Based on the grain growth mechanisms, an advanced sintering process for additional interconnection of the particles without particle growth is needed to further increase the thermoelectric performanc

    Thermoelectric properties of CaMnO3 films obtained by soft chemistry synthesis

    Get PDF
    Polycrystalline randomly oriented CaMnO3 films were successfully deposited on sapphire substrates by soft chemistry methods. The precursor solutions were obtained from a mixture of metal acetates dissolved in acids. The Seebeck coefficient and the electrical resistivity were measured in the temperature range of 300 K < T < 1000 K. Modifications of thermal annealing procedures during the deposition of precursor layers resulted in different power factor values. Thermal annealing of CaMnO3 films at 900 °C for 48 h after four-layer depositions (route A) resulted in a pure perovskite phase with higher power factor and electrical resistivity than four-layer depositions of films annealed layer by layer at 900 °C for 48 h (route B). The studied films have negative Seebeck coefficients indicative of n-type conduction and electrical resistivities showing semiconducting behavio

    Enhancement of thermoelectric performance in strontium titanate by praseodymium substitution

    Get PDF
    In order to identify the effects of Pr additions on thermoelectric properties of strontium titanate, crystal structure, electrical and thermal conductivity, and Seebeck coefficient of Sr1-xPrxTiO3 (x = 0.02-0.30) materials were studied at 400 < T < 1180 K under highly reducing atmosphere. The mechanism of electronic transport was found to be similar up to 10% of praseodymium content, where generation of the charge carriers upon substitution resulted in significant increase of the electrical conductivity, moderate decrease in Seebeck coefficient, and general improvement of the power factor. Formation of point defects in the course of substitution led to suppression of the lattice thermal conductivity, whilst the contribution from electronic component was increasing with carrier concentration. Possible formation of layered structures and growing distortion of the perovskite lattice resulted in relatively low thermoelectric performance for Sr0.80Pr0.20TiO3 and Sr0.70Pr0.30TiO3. The maximum dimensionless figure of merit was observed for Sr0.90Pr0.10TiO3 and amounted to similar to 0.23 at 670K and similar to 0.34 at 1170 K, close to the values, obtained in similar conditions for the best bulk thermoelectrics, based on rare-earth substituted SrTiO3. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4790307

    A self-forming nanocomposite concept for ZnO-based thermoelectrics

    Full text link
    Zinc oxide (ZnO) has a very broad and versatile range of applications provided by its high abundance and optical and electrical properties, which can be further tuned by donor substitution. Al-doped ZnO is probably the most thoroughly investigated material with regard to thermoelectric properties. Fairly reasonable electrical properties of donor-doped zinc oxide are usually combined with high thermal conductivity limiting potential applications. Here we report a new self-forming nanocomposite concept for ZnO-based thermoelectrics, where a controllable interplay between the exsolution of the nanophases and modification of the host matrix suppresses the thermal transport while imparting enhanced electrical performance. The thermoelectric performance of the best-obtained composite, described by the dimensionless figure-of-merit ZT, at 920-1200 K is almost twice that of the pure matrix composition and reaches up to 0.11. The proposed approach invokes controlled interactions between composite components as a novel tool for decoupling the electrical and thermal transport parameters and shows clear prospects for an implementation in other thermoelectric oxide systems. The results indicate that the proposed concept may also constitute a promising pathway to achieve stable electrical performance at high temperatures, which currently represents one of the major challenges towards achieving ZnO-based thermoelectrics. © The Royal Society of Chemistry
    corecore