307 research outputs found

    Measurement of Finger Pad Forces and Friction using Finger Nail Mounted Strain Gauges

    Get PDF
    There are currently few techniques for measuring in-vivo the forces exerted by the finger pads when handling objects and friction levels in the interface. Those that exist are intrusive and affect the manner in which an object is gripped or the interface between finger and object. A non-intrusive method would enable data to be gathered on object grip and manipulation that could improve designs to aid usability and inclusivity. The aim of this work was to assess the feasibility of determining finger pad forces and friction between a finger pad and a surface using strain gauges mounted to finger nails. The index finger and thumb were assessed as these have been shown to be used most for gripping in everyday tasks. Initially Digital Image Correlation was used to study strain across whole finger nails during a loading event to establish where it would be best to mount the strain gauges. After attachment of the strain gauges, tests were carried out normally loading finger pads against a force plate to determine strain/force relationships and the effects of slight finger side roll. Sliding tests were then also carried out in dry and lubricated conditions to see how strain varied when normal force was kept constant. Clear relationships have been established between strain and force that could be used to calibrate from measurements taken during actual object manipulation. Changing friction has also been shown to affect strain

    High-Dose Therapy and Autologous Hematopoietic Cell Transplantation in Peripheral T Cell Lymphoma (PTCL): Analysis of Prognostic Factors

    Get PDF
    Patients with peripheral T cell lymphoma (PTCL) have a poor prognosis with current treatment approaches. We examined the outcomes of high-dose therapy (HDT) and autologous hematopoietic cell transplant (AHCT) on the treatment of PTCL and the impact of patient/disease features on long-term outcome. Sixty-seven patients with PTCL–not otherwise specified (n = 30), anaplastic large cell lymphoma (n = 30), and angioimmunoblastic T cell lymphoma (n = 7) underwent HDT/AHCT at the City of Hope. The median age was 48 years (range: 5-78). Twelve were transplanted in first complete remission (1CR)/partial remission (PR) and 55 with relapsed or induction failure disease (RL/IF). With a median follow-up for surviving patients of 65.8 months (range: 24.5-216.0) the 5-year overall survival (OS) and progression-free survival (PFS) were 54% and 40%, respectively. The 5-year PFS was 75% for 1CR/PR compared to 32% for RL/IF patients (P = .01). When the Prognostic Index for PTCL unspecified (PIT) was applied at the time of transplant, patients in the PIT 3-4 group had 5-year PFS of only 8%. These results show that HDT/AHCT can improve long-term disease control in relapsed/refractory PTCL and that HDT/AHCT should ideally be applied either during 1CR/PR, or as part of upfront treatment. More effective and novel therapies are needed for patients with high-risk disease (PIT 3-4 factors) and allogeneic HCT should be explored in these patients

    Comprehensive characterization of molecular interactions based on nanomechanics

    Get PDF
    Molecular interaction is a key concept in our understanding of the biological mechanisms of life. Two physical properties change when one molecular partner binds to another. Firstly, the masses combine and secondly, the structure of at least one binding partner is altered, mechanically transducing the binding into subsequent biological reactions. Here we present a nanomechanical micro-array technique for bio-medical research, which not only monitors the binding of effector molecules to their target but also the subsequent effect on a biological system in vitro. This label-free and real-time method directly and simultaneously tracks mass and nanomechanical changes at the sensor interface using micro-cantilever technology. To prove the concept we measured lipid vesicle (approximately 748*10(6) Da) adsorption on the sensor interface followed by subsequent binding of the bee venom peptide melittin (2840 Da) to the vesicles. The results show the high dynamic range of the instrument and that measuring the mass and structural changes simultaneously allow a comprehensive discussion of molecular interactions

    Working towards an engagement turn to agricultural research in the Tonle Sap Biosphere,Cambodia

    Get PDF
    A new generation of agricultural research programs are embracing use of participation as a vehicle for achieving greater impact and supporting transformative change in complex social-ecological systems. In this paper, we share learning from use of participatory action research in the Tonle Sap biosphere in Cambodia, as the main implementing methodology within a large multi-partner agricultural research program. We describe the program’s espoused approach to applying participatory methodologies focusing on co-ownership, equity and reflexivity with stakeholders throughout the research process. We then reflect upon our practice as we pursued initiatives to support increased income and nutrition outcomes for the poorest people in a diverse aquatic agricultural system characterized by inequality. We discuss the challenges and early successes of the process and share three enabling conditions that support a shift towards quality of participation in agricultural research: (1) focusing at the outset on a strengthsbased mind-set, (2) staging a critical stance to progressively build equity in process and outcomes, and (3) institutionalizing reflexivity to facilitate ongoing learning

    Magnetic resonance in iron oxide nanoparticles: quantum features and effect of size

    Full text link
    In order to better understand the transition from quantum to classical behavior in spin system, electron magnetic resonance (EMR) is studied in suspensions of superparamagnetic magnetite nanoparticles with an average diameter of ~ 9 nm and analyzed in comparison with the results obtained in the maghemite particles of smaller size (~ 5 nm). It is shown that both types of particles demonstrate common EMR behavior, including special features such as the temperature-dependent narrow spectral component and multiple-quantum transitions. These features are common for small quantum systems and not expected in classical case. The relative intensity of these signals rapidly decreases with cooling or increase of particle size, marking gradual transition to the classical FMR behavior

    Advances in gene therapy for muscular dystrophies

    Get PDF
    Duchenne muscular dystrophy (DMD) is a recessive lethal inherited muscular dystrophy caused by mutations in the gene encoding dystrophin, a protein required for muscle fibre integrity. So far, many approaches have been tested from the traditional gene addition to newer advanced approaches based on manipulation of the cellular machinery either at the gene transcription, mRNA processing or translation levels. Unfortunately, despite all these efforts, no efficient treatments for DMD are currently available. In this review, we highlight the most advanced therapeutic strategies under investigation as potential DMD treatments
    corecore