654 research outputs found

    Fano-type interpretation of red shifts and red tails in hole array transmission spectra

    Full text link
    We present a unifying point of view which allows to understand spectral features reported in recent experiments with two-dimensional arrays of subwavelength holes in metal films. We develop a Fano analysis of the related scattering problem by distinguishing two interfering contributions to the transmission process, namely a non-resonant contribution (direct scattering) and a resonant contribution (surface plasmon excitation). The introduction of a coupling strength between these two contributions naturally induces resonance shifts and asymmetry of profiles which satisfy simple scaling relations. We also report an experiment to confirm this analysis.Comment: 5 page

    Density profile of a strictly two-dimensional Bose gas at finite temperature

    Full text link
    We study a Bose-condensed gas at finite temperature, in which the particles of the condensate and of the thermal cloud are constrained to move in a plane under radial harmonic confinement and interact via strictly two-dimensional collisions. The coupling parameters are obtained from a calculation of the many-body T-matrix and decreases as temperature increases through a dependence on the chemical potential and on the occupancy of excited states. We discuss the consequences on the condensate fraction and on the density profiles of the condensed and thermal components as functions of temperature, within a simplified form of the two-fluid model.Comment: 12 pages, 4 figure

    Relativistic Kinetics of Phonon Gas in Superfluids

    Get PDF
    The relativistic kinetic theory of the phonon gas in superfluids is developed. The technique of the derivation of macroscopic balance equations from microscopic equations of motion for individual particles is applied to an ensemble of quasi-particles. The necessary expressions are constructed in terms of a Hamilton function of a (quasi-)particle. A phonon contribution into superfluid dynamic parameters is obtained from energy-momentum balance equations for the phonon gas together with the conservation law for superfluids as a whole. Relations between dynamic flows being in agreement with results of relativistic hydrodynamic consideration are found. Based on the kinetic approach a problem of relativistic variation of the speed of sound under phonon influence at low temperature is solved.Comment: 23 pages, Revtex fil

    Feshbach resonance in a strictly two-dimensional atomic Bose gas

    Full text link
    We discuss the atom-atom scattering problem across a Feshbach resonance in a two-dimensional dilute Bose gas at zero temperature, in the limit where the s-wave scattering length exceeds the width of the vertical confinement. We determine a tunable coupling-strength parameter and by controlling it we evaluate how the condensate wave function spreads out with increasing atom-atom repulsions. We also discuss the stability of the condensate in the magnetic-field regime where the coupling has become attractive.Comment: 9 pages, 1 figur

    Quantum Phase Transitions and Conserved Charges

    Full text link
    The constraints on the scaling properties of conserved charge densities in the vicinity of a zero temperature (TT), second-order quantum phase transition are studied. We introduce a generalized Wilson ratio, characterizing the non-linear response to an external field, HH, coupling to any conserved charge, and argue that it is a completely universal function of H/TH/T: this is illustrated by computations on model systems. We also note implications for transitions where the order parameter is a conserved charge (as in a T=0T=0 ferromagnet-paramagnet transition).Comment: 19 pages, REVTEX 3.0, 8 uuencoded Postscript figues appended, YCTP-xxx

    Tkachenko waves, glitches and precession in neutron star

    Full text link
    Here I discuss possible relations between free precession of neutron stars, Tkachenko waves inside them and glitches. I note that the proposed precession period of the isolated neutron star RX J0720.4-3125 (Haberl et al. 2006) is consistent with the period of Tkachenko waves for the spin period 8.4s. Based on a possible observation of a glitch in RX J0720.4-3125 (van Kerkwijk et al. 2007), I propose a simple model, in which long period precession is powered by Tkachenko waves generated by a glitch. The period of free precession, determined by a NS oblateness, should be equal to the standing Tkachenko wave period for effective energy transfer from the standing wave to the precession motion. A similar scenario can be applicable also in the case of the PSR B1828-11.Comment: 6 pages, no figures, accepted to Ap&S

    K^- Meson Production in the Proton-Proton Reaction at 3.67 GeV/c

    Full text link
    The total cross section of the reaction ppppK+Kpp\to ppK^+K^- has been determined for proton--proton reactions with pbeam=3.67GeV/cp_{beam}=3.67 GeV/c. This represents the first cross section measurement of the ppppKK+pp \to ppK^-K^+ channel near threshold, and is equivalent to the inclusive ppppKXpp\to ppK^-X cross section at this beam momentum. The cross section determined at this beam momentum is about a factor 20 lower than that for inclusive ppppK+Xpp\to ppK^+X meson production at the same CM energy above the corresponding threshold. This large difference in the K+K^+ and KK^- meson inclusive production cross sections in proton-proton reactions is in strong contrast to cross sections measured in sub-threshold heavy ion collisions, which are similar in magnitude at the same energy per nucleon below the respective thresholds.Comment: 12 pages, 3 figures Phys. Lett. B in prin

    Production of η\eta\prime Mesons in the ppppηpp \to pp\eta\prime Reaction at 3.67 GeV/c

    Full text link
    The ratio of the total exclusive production cross sections for η\eta\prime and η\eta mesons has been measured in the pppp reaction at pbeam=3.67p_{beam}=3.67 GeV/c. The observed η/η\eta\prime/\eta ratio is (0.83±0.110.18+0.23)×102(0.83\pm{0.11}^{+0.23}_{-0.18})\times 10^{-2} from which the exclusive η\eta\prime meson production cross section is determined to be (1.12±0.150.31+0.42)μb(1.12\pm{0.15}^{+0.42}_{-0.31})\mu b. Differential cross section distributions have been measured. Their shape is consistent with isotropic η\eta\prime meson production.Comment: 14 pages, 5 figures, accepted by Phys.Lett.
    corecore