5,196 research outputs found
A general magnetic-energy-based torque estimator: validation via a permanent-magnet motor drive
This paper describes the use of the current–flux-linkage ( ) diagram to validate the performance of a general magnetic-energy-based torque estimator. An early step in the torque estimation is the use of controller duty cycles to reconstruct the average phase-voltage waveform during each pulsewidth-modulation (PWM) switching period. Samples over the fundamental period are recorded for the estimation of the average torque. The fundamental period may not be an exact multiple of the sample time. For low speed, the reconstructed voltage requires additional compensation for inverter-device losses. Experimental validation of this reconstructed waveform with the actual PWM phase-voltage waveform is impossible due to the fact that one is PWM in nature and the other is the average value during the PWM period. A solution to this is to determine the phase flux-linkage using each waveform and then plot the resultant loops. The torque estimation is based on instantaneous measurements and can therefore be applied to any electrical machine. This paper includes test results for a three-phase interior permanent-magnet brushless ac motor operating with both sinusoidal and nonsinusoidal current waveforms
Performance estimation of interior permanent-magnet brushless motors using the voltage-driven flux-MMF diagram
The flux-magnetomotive force (flux-MMF) diagram, or "energy conversion loop," is a powerful tool for computing the parameters of saturated interior permanent-magnet brushless motors, especially when the assumptions underlying classical dq theory are not valid, as is often the case in modern practice. Efficient finite-element computation of the flux-MMF diagram is possible when the motor current is known a priori, but in high-speed operation the current regulator can lose control of the current waveform and the computation becomes "voltage-driven" rather than "current-driven." This paper describes an efficient method for estimating the motor performance-average torque, inductances-by solving the voltage-driven problem. It presents experimental validation for a two-pole brushless interior permanent-magnet motor. The paper also discusses the general conditions under which this method is appropriate, and compares the method with alternative approaches
Diffusive spreading and mixing of fluid monolayers
The use of ultra-thin, i.e., monolayer films plays an important role for the
emerging field of nano-fluidics. Since the dynamics of such films is governed
by the interplay between substrate-fluid and fluid-fluid interactions, the
transport of matter in nanoscale devices may be eventually efficiently
controlled by substrate engineering. For such films, the dynamics is expected
to be captured by two-dimensional lattice-gas models with interacting
particles. Using a lattice gas model and the non-linear diffusion equation
derived from the microscopic dynamics in the continuum limit, we study two
problems of relevance in the context of nano-fluidics. The first one is the
case in which along the spreading direction of a monolayer a mesoscopic-sized
obstacle is present, with a particular focus on the relaxation of the fluid
density profile upon encountering and passing the obstacle. The second one is
the mixing of two monolayers of different particle species which spread side by
side following the merger of two chemical lanes, here defined as domains of
high affinity for fluid adsorption surrounded by domains of low affinity for
fluid adsorption.Comment: 12 pages, 3 figure
A distributed control for a grasping function of a hyperredundant arm
The paper focuses on the control problem of a tentacle robot that performs the coil function of grasping. First, the dynamic model of a hyperredundant arm with continuum elements produced by flexible composite materials in conjunction with active-controllable electro-rheological fluids is analyzed. Secondly, both problems, i.e. the position control and the force control are approached. The difficulties determined by the complexity of the non-linear integraldifferential equations are avoided by using a basic energy relationship of this system. Energy-based control laws are introduced for the position control problem. A force control method is proposed, namely the DSMC method in which the evolution of the system on the switching line by the ER fluid viscosity is controlled. Numerical simulations are also presente
Spectral properties of the largest asteroids associated with Taurid Complex
We obtained spectra of six of the largest asteroids (2201, 4183, 4486, 5143,
6063, and 269690) associated with Taurid complex. The observations were made
with the IRTF telescope equipped with the spectro-imager SpeX. Their taxonomic
classification is made using Bus-DeMeo taxonomy. The asteroid spectra are
compared with the meteorite spectra from the Relab database. Mineralogical
models were applied to determine their surface composition. All the spectral
analysis is made in the context of the already published physical data.
Five of the objects studied in this paper present spectral characteristics
similar to the S taxonomic complex. The spectra of ordinary chondrites
(spanning H, L, and LL subtypes) are the best matches for these asteroid
spectra. {\bf The asteroid} (269690) 1996 RG3 presents a flat featureless
spectrum which could be associated to a primitive C-type object. The increased
reflectance above 2.1 microns constrains its geometrical albedo to a value
around 0.03.
While there is an important dynamical grouping among the Taurid Complex
asteroids, the spectral data of the largest objects do not support a common
cometary origin. Furthermore, there are significant variations between the
spectra acquired until now.Comment: Accepted for publication in A&
Calculating the interior permanent-magnet motor
This paper describes the calculation of torque in a brushless permanent-magnet line-start AC motor by means of the flux-MMF diagram in combination with the finite-element method. Results are compared with measured flux-MMF diagrams, with shaft torque measurements, and with torque calculated using the classical phasor diagram
Dust in dwarf galaxies: The case of NGC 4214
We have carried out a detailed modelling of the dust heating and emission in
the nearby, starbursting dwarf galaxy NGC 4214. Due to its proximity and the
great wealth of data from the UV to the millimeter range (from GALEX, HST, {\it
Spitzer}, Herschel, Planck and IRAM) it is possible to separately model the
emission from HII regions and their associated photodissociation regions (PDRs)
and the emission from diffuse dust. Furthermore, most model parameters can be
directly determined from the data leaving very few free parameters. We can fit
both the emission from HII+PDR regions and the diffuse emission in NGC 4214
with these models with "normal" dust properties and realistic parameters.Comment: 4pages, 3 figures. To appear in 'The Spectral Energy Distribution of
Galaxies' Proceedings IAU Symposium No 284, 201
Scalar and tensorial topological matter coupled to (2+1)-dimensional gravity:A.Classical theory and global charges
We consider the coupling of scalar topological matter to (2+1)-dimensional
gravity. The matter fields consist of a 0-form scalar field and a 2-form tensor
field. We carry out a canonical analysis of the classical theory, investigating
its sectors and solutions. We show that the model admits both BTZ-like
black-hole solutions and homogeneous/inhomogeneous FRW cosmological
solutions.We also investigate the global charges associated with the model and
show that the algebra of charges is the extension of the Kac-Moody algebra for
the field-rigid gauge charges, and the Virasoro algebrafor the diffeomorphism
charges. Finally, we show that the model can be written as a generalized
Chern-Simons theory, opening the perspective for its formulation as a
generalized higher gauge theory.Comment: 40 page
Generalized quantum measurements and local realism
The structure of a local hidden variable model for experiments involving
sequences of measurements rigorously is analyzed. Constraints imposed by local
realism on the conditional probabilities of the outcomes of such measurement
schemes are explicitly derived. The violation of local realism in the case of
``hidden nonlocality'' is illustrated by an operational example.Comment: Revtex, 12 pages; Some modifications of introduction has been made; a
note stating that part of results had been obtained earlier by other authors,
has been added; one postscript figure available at request from
[email protected]
Recovery of entanglement lost in entanglement manipulation
When an entangled state is transformed into another one with probability one
by local operations and classical communication, the quantity of entanglement
decreases. This letter shows that entanglement lost in the manipulation can be
partially recovered by an auxiliary entangled pair. As an application, a
maximally entangled pair can be obtained from two partially entangled pairs
with probability one. Finally, this recovery scheme reveals a fundamental
property of entanglement relevant to the existence of incomparable states.Comment: 4 pages, 2 figures, REVTeX; minor correction
- …