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Abstract - This paper describes the calculation of
torque in a brushless permanent-magnet line-starta.c.
motor by means of the flux-MMr diagram in
combination with the finite-element method. Results
are compared with measured flux-MMF diagrams, with
shaft torque measurements, and with torque
calculated using the classical phasor diagram.

I. INTRODUCTION

The interior permanent-magnet motor (IPM) isa
hybrid permanent-magnet/reluctance synchronous
brushless motor that is being developed for several
applications such as servo motors, elevator drive
motors, and electric vehicle traction motors,
[1-6,10,12]. Line-start IPM motors are also used for
compressors and other applications requiring a
high-efficiency alternative to the induction motor;
these are often capacitor motors fed from a single-
phase supply, as is the motor in Fig. 1, [8]. In many
cases the windings are not sine-distributed and the
current and EMF waveforms may be non-sinusoidal.

Saturation of the magnetic circuit is particularly
complex in these motors: different sections of the
machine saturate independently, causing large and
sometimes time-varying changes in equivalent-
circuit parameters such as inductances and EMF.
Unfortunately these are the parameters used in
classical methods for calculating torque, current,
and voltage.

It therefore becomes unclear to what extent it is
safe torely on classical methods based on equivalent
circuits and (in the case of sinewave machines) on
phasors and dg-axis theory.

Thefinite-element method is capable of calculating
the electromagnetic behavior, but it is rather slow,
and it has no a priorirelationship with the classical
theory of operation of the machine.
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Fig.1. Cross-section of the 2-pole capacitor motor analyzed.

The arc-shaped ferrite magnets are shaded.

This paper shows that for “sinewound” machines,
which have sinusoidally distributed stator ampere-
conductors, the elliptical flux-MMF diagram [2,11]
calculated by classical theory can be readily
compared with the same diagram computed by the
finite-element method. The comparison providesthe
link between the finite-element method and the
classical theory.

The comparisons throw considerable light on the
effect of saturation on the d- and g-axis parameters,
particularly the synchronous reactances X; and X,.
Because of the difficulty of calculating unambiguous
saturated values of X; and X,;, it is argued that the
flux-MMrF diagram should be routinely used,
especially as its calculation is straightforward using
the finite-element method.

The flux-MMF diagram can be measured directly
usinga digital recording oscilloscope, and the torque
calculated from its enclosed area can be compared
with the shaft torque obtained from dynamometer
tests. These results are presented as experimental
validation of the flux-MMF diagram.
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Fig. 2.
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Phasor diagram and flux-linkage vector diagram. On the left are the electrical quantities, Le., voltages and currents.

Onthe right are the corresponding magnetic flux-linkages. The dotted lines show the lack of uniqueness in the saturated valttes
of X; and E. For simplicity, resistance is neglected in this diagram, but normally it must be included.

II. THEORY
A. Phasor Diggram for Sinewave Operation

The phasor diagram (Fig. 2) is drawn for one phase
of a motor operating with balanced sinusoidal
currents so that only the positive sequence field
exists. It is assumed that the windings produce a
sinusoidal distribution of ampere-conductors around
the periphery of a smooth cylindrical stator bore
(apart from slotting). The EMF and terminal voltage
waveforms are also sinusoidal in time.

The phasor diagram is not only useful in
understanding how the torque is limited by the
voltage and current available from the drive, but it
is also the basis of the circle diagram which is useful

“for understanding the effect of changes in speed and
load, {1,2]. The electromagnetic torque T, is given
in terms of the rms current components I, and Iq and
the synchronous reactances X; and X, by

T =

m

a *;L’ (EL + LI(X, - Xl ()
where m is the number of phases, p is thenumber of
pole-pairs, w is the radian frequency, and E is the
rms fundamental open-circuit EMF per phase. In
terms of the fundamental d- and g-axis flux-linkage
components ¥y and ¥, the equation for T, can be
expressed as

T =m p(‘Pqu

L]
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B. Effect of Saturation

Equations (1) and (2) remain valid for the
fundamental components even under saturated
conditions. Recognizing this, many engineers try to
work with “saturated values of X; and X", [1-8].
However, it is not often stated that the saturated
value of X; is not unique. The equation

1
¥y = =B + XdId] @

w

shows that for any value of d-axis current I, there is
an infinite number of pairs of valties of E and X
that will produce the d-axis flux-linkage ¥, that is
actually present in the winding.

The lack of uniqueness in the saturated values of
E and X, is illustrated in Fig. 2, where the dotted line
construction produces the same value of airgap flux
{and flux-linkage ¥) as the solid lines. It means that
the actual airgap flux cannot be uniquely
apportioned to the magnet and the armature MMF.

Many estimates of the “saturated value” of X
tacilty assume that E is constant. For example, in
finite-element analysis the permeability in every
element of the mesh may be “frozen” at the open-
circuit value: the additional flux-linkage due to
stator current is computed with these
permeabilities, and its ratio to the current that is
causing it is taken as a measure of the synchronous
inductance.
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No matter whether the total flux-linkage is used to
derive “total inductance”, or whether the additional
flux-linkage is used to define “incremental
inductance”, the process of freezing permeabilities
is arbitrary, and can lead to confusion as to which
value should be used in equations such as (1).
Difficulties can arise in the interpretation of the
results of this method, such as discontinuities in the
graph of X, vs. I; when I; changes from positive to
negative; (see Fig. 13).

Eguation (2) suggests that apportiomment of g-axis
voltage (or d-axis flux-linkage) between E and X1
is actually unnecessary, not only for calculating the
torque but even for solving the voltage equations of
the circuit, which in the steady state are

Vd = RaId - jw‘i’q;
v =

a Ran + jo'?,.

If V4 and V, are known, these equations can be
solved for I, and I, provided that the relationships
between I and ¥4 and between I, and ¥ are known.
The functions ¥y(f;) and ¥ (1)) are known as the
magnetization curves in the d and g axes, and they
can be pre-computed by the finite-element method
without any ambiguity as to how much flux is
attributed to the magnet and how much to the
current. Where there is significant cross-saturation,
the flux-linkages can be made functions of both
currents, i.e. Y4(Zy, 1)) and ¥ (Iy,1).

C. The Flux-MMF Diagram

The flux-MMF diagram is the locus of a point whose
coordinates are flux and MMF, or more conveniently,
flux-linkage ¢ and current { in each phase of the
machine, [11]. Over one cycle the area W enclosed
within this locus is equal to the electromechanical
energy conversion in that phase. If the induced
voltage (i.e., the terminal voltage minus the
resistance voltage drop) and the current are both
sinusoidal, the flux-MMF diagram is elliptical as
shown in Fig, 3(a).

@

In a brushless motor with squarewave current
drive and trapezoidal EMF, the diagram is composed
approximately of two parallelograms as in Fig. 3(b).

If the phases are balanced, the average
electromagnetic torque is derived from the variation
of co-energy with rotor position over one cycle:

W
T, = m—. (5)

€ 2n

yd

(2) Sinewave

{b) Squarewave

Fig. 3. i-§ loops for sinewave and squarewave drives

The torque equation (2) is a special case of (5) in
which Wis the area of the ellipse whose dimensions
in the current and flux-linkage axes are defined by
Iand ¥ respectively. The simplicity of (2) follows
from the simple elliptical shape of Fig. 3(a).

The flux-MMF diagram is completely general. It
works for any waveforms of current and flux-
linkage, and does not require sinusoidally
distributed windings or sinusoidal time-waveforms
of voltage or current. Since the EMF ineach phaseis
equal to dy/dt, it works for motors having any EMF
waveform. It also includes cogging torque.

The simple classical form of the torque equation
such as(2) arises only under special ideal conditions
characterized by the simple geometric shape of the
flux-MMF diagram. In the general case these ideal
conditions are not met.

D. Calculation of the Flux-MMF Diagram

In classical theory the time-waveforms of flux-
linkage and current are expressed by (6) with phase
angles and amplitudes as in Fig. 2:

i{wt) = I cos ot
and (of) = ¥, cos [wf + (6 -y - n/2) ©

where {, is derived from the phasor diagram using
relationships such as (4). Then the flux-MMF
diagram follows directly in a plot of ¢ vs. i.

In the finite-element method, the waveform i(wf) is
applied to the conductor distribution at each of a
series of rotor positions such as the one shown in
Fig. 4 Simultaneously the appropriate current
waveforms are applied to the conductors of the other
phases. The flux-linkage  of each phase is computed
from the weighted summation of vector potentials
overtherespective conductor areas within the stator
slots. Then, as in the classical method, the flux-Mvmr
diagram follows directly in a plot of ¢ vs. i.
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Fig. 4. Finite-element calculation

The flux-MMF diagram obtained in this way
includes all flux-linkage components except the end-
turn leakage. In particular, slot-leakage is included.

Examples of y-i diagrams obtained by both
methods are compared with test data in Section III.

E. Extracting E, X;and X from finite-element data

As suggested earlier, the equivalent circuit and
the phasor diagram with E, X, X, arenot needed for
calculating the torque, if the finite-element method
is available to be used with the flux-MMF diagram or
the Maxwell stress method. However, the finite-
element method has no quick means of calculating
how much current will flow for a given applied
voltage, or vice-versa. For this reason it is desirable
to correlate the finite-element method with the
equivalent-circuit calculation. For sinewave motors
it is convenient to do this by extracting values of E,
X4and X from the finite-element results.

One way to do this is to use the finite-element
method to calculate the self- and mutual inductances
of the phase windings directly, as a function of rotor
position, since the reactances X, and X, can be
derived from these. As mentioned earlier,
permeabilities are often “frozen” at their open-
cireuit values, while E is regarded as constant; but
because of the ambiguities that arise as a result of
the nonlinearity ofthe magnetic circuit, thismethod
is to be avoided.

Another method is to extract B, the fundamental
component of the airgap flux-density distribution
around the stator bore, by Fourier analysis of the
calculated distribution: see Fig. 5. From B, the
fundamental airgap flux/pole can be calculated, and
then the peak flux-linkage per phase is given by (7),
where D is the stator bore diameter, Ly, the stack
length, k, the fundamental winding factor, and Ty,
the number of turns in series per phase:

Flux density in the Gap [T'0 1]

Azimuth from rotor S d-=xis [elec degr100]

Fig. 5. Finite-element calculation of open-circuit flux-
density arcund the airgap, over two half-poles.
The fundamental component B, is also shown.
B DL
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The rms voltage induced in the phase winding by
this flux-linkage is

5%
V2

If ¥, is calculated for the open-circuit condition,
this equation gives E, while (7) gives ¥;y, the open-
circuit flux-linkage due to the magnet. Under load,
it gives the phase voltage Vshown in Fig. 2.

When the fundamental distribution B(6) is
obtained, its phase angle can be used as a measure
of & (see Fig. 2), so that if E is assumed constant the
reactances X; and X, can be extracted by setting R,
= 0 and using (4) Wifj]

V = i, 1))

. Ld
‘Pd = ‘P10085 =T1Md+_:;Id
. L, ©
and Tq .= ‘Pl sin 6 = :Iq.

The values of X; = wLy and X, = wL, obtained in
this way from the airgap B distribution do not
include the slot-leakage reactance or the end-turn
leakage reactance. The only simple way to add these
elements is by estimating them with classical design
formulas, [1].
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II1. MEASURING THE FLUX-MMF DIAGRAM

The flux-MvrF diagram is measured during normal
load-test conditions on a dynamometer as shown in
Figs.6and 7.

The phase terminal voltage v and current i are
recorded digitally and the flux-linkage waveform is
obtained from the integral

v = f(v - Ri)dt, (10)

where R is the phase resistance.

The test motor analyzed in this paper is a 230-V, 50-
Hz, 2-pole single-phase capacitor motor with main
and auxiliary phases whose winding axes are
displaced by 90°. Beth windings have 5 concentric
coils per pole with approximately sinusoidal
distribution of turns; see Fig. 8.

Dynamometer load tests are conducted with
approximately sinusoidal currents supplied by a
two-phase DSP-controlled PWM inverter. The
amplitudes of the mainand auxiliary phase currents
are controlled to be in the inverse ratio of the
effective turns in each winding, so that operation is
balanced. The phase orientation of the current is
also controlled by the inverter, using shaft position
feedback from an optical encoder.

Fig. 6. The test motor is on the right-hand side of the
picture, with an in-line torque transducer in the center and a
brake machine on the left. Rotor position is measured by an
in-line optical encoder.

Fig.7. Dynamometer and test configuration

Fig.8. Main phase winding of test motor.
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Fig.9. Measured open-circuit EMF waveform of main phase

winding at 1000 rpm. Magnet temperature = 25°C.

The measured open-circuit EMF waveform of the
main phase at 1,000 rpm is shown in Fig. 9, together
with its fundamental component, E = 38.9 V rms.

The test motor has no skew, so the EMF shows
considerable ripple arising from the slotting on both
the rotor and the stator. The open-circuit flux
distribution in the airgap is far from sinusoidal, as
shown by the finite-element calculation in Fig. 5.

It is very important to measure or estimate the
magnet temperature at every test point, so that the
correct remanent flux-density can be used in
calculations. The same is true of the winding
temperature, so that the phase resistances can be
correctly calculated.
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IV. TEST RESULTS
A. Measured Flux-MMF Diagram

Fig. 10 shows the flux-MMF diagram at a typical
test point, with a sinusoidal current of 2.0 A (peak)at
an angle y = +40° meaning that the current phasor
leads the EMF phasor by 40°.

The torque calculated by (5) from the loop areas in
Fig. 10 is 1.30 Nm. This includes the contributions
from both the main and auxiliary phases, which are
almost equal. Also shown is the i-y loop computed
by the finite-element method without end-turn
leakage correction. Without this correction the
measured and calculated loops differ slightly, and
further deviations arise from the PWM harmonics in
the measured loops. However, the loop areas are
remarkably close.
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Fig.10. Measured i<y loops for the main and auxiliary phase
windings. The dotted lines show the locps derived
from the finite-element method driven by the
fundamental component of current.
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Fig.1l. Torque vs. y obtained by measurement and
calculation. Sinusoidal current, peak value 2.0 A.

Fig. 11 shows the torque vs. y over a range from
-40° to +40°, with constant current of 2 A peak at
1000 rpm. This current is close to the safe maximum
of the motor. Close agreement is obtained between
torque values from the i-y loops obtained by direct
measurement and finite-element calculation, over
the whole range. The shaft torque is about 0.1 Nm
less than the loop torque, probably owing to a
combination of friction and windage and a drag
torque caused by iron loss.

Fig. 11 alsoshows the torque calculated by (1) after
adjusting X, and X, tomatch the i-yloop obtained by
the finite-element method at vy = 40° and 2 A, with E
= 38.9 Vrms, the test value. At other values of y the
“phasor” method deviates hecause of variations in
X3 and X, caused by saturation.

B. Variation of X; and X,

Fig. 11 giveslittle information about the variation
of X;and X, with current. Accordingly two series of
finite-element calculations were carried out, one
with current only in the d-axis and the other with
current only in the g-axis. For each solution, X, and
Xq were obtained using (7-9). The result is given in
Fig. 12, which expresses X, as a function of I; with
I, =0, anqu as a function of I; with I;=0. Inall
cases it is assumed that E is constant, as in [8].

Fig. 12 shows a huge variation of 61 in X, and
almost 2:1 in X;.

Calculations with current flowing simultaneocusly
in both axes show that X, is affected by I, being
increased when Iy < 0 and decreased when I > 0,
with I, > 0. An example is shown in Fig. 13 which is
computed for I, = 2.0 A (peak), and varying ;.

300 —
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Fig.12. Variation of X vs. I; with I, = 0, and of X vs. I,
with Iy = 0, calculated using (7-9) from finite-
element data with constant E.
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Fig.13. X;vs. Iy with [, = 2.0 A (peak).

The discontinuity at Iy = 0 was menticned earlier
in connection with the “frozen permeability”
method. It can be attributed to an error or variation
AE from the open-circuit value Eg

V,- (E,+AE) V,-E, AE

X = . (1D
d I, I, I,

If £ is assumed constant and equal to E,, the value of
X that will be inferred by using only the first term
of (11) is in error by AE/I;, which is indefinite when
I, = 0. Evidently the effect of cross-saturation is
that E depends on the current components I and I
asdo Xy and X

V. CONCLUSION

Experimental validation of the flux-MMF diagram
for torque calculation has been given in the form of
measured energy conversion loops and shaft torque
measurements. The flux-MMF diagram is convenient
to calculate by the finite-element method, and if the
current waveform is known a priori, the terminal
voltage can be calculated from Ri + dyi/dt directly,
providing valuable information for drive design.

In contrast, the classical phasor-diagram method
is only as accurate as the values of £, X; and X, at
every load point. X, and especially X vary w1dely
as a function of current, and cross-saturatlon effects
complicate these functions: for example, if E is
assumed constant the variation of X, with I; can be
discontinuous around Iy = 0. Since there is no
practical means of calculating X; and X, accurately
other than the finite-element method, it is hard to
- escape the conclusion that the classical method has
little more than symbolic value and that the finite-
element method should be used routinely instead.
The phasor diagram is still useful as a gu1de but
inadequate as a model.

This explanation was originally suggested to one of the
authors by R.J. Krefta.

Although thefinite-element method can be used to
calculate E, X and X, for use in the phasor diagram,
this method applies only to motors that have sine-
distributed windings and sinusoidal waveforms of
EMF, current, and terminal voltage. The flux-MMF
diagram method, on the other hand, is completely
general and applies to motors that do not have these
ideal properties.
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