401 research outputs found
Anarchism and the British warfare state : The prosecution of the War Commentary Anarchists, 1945
The arrest and prosecution in 1945 of a small group of London anarchists associated with the radical anti-militarist and anti-war publicationWar Commentary at first appears to be a surprising and anomalous set of events, given that this group was hitherto considered to be too marginal and lacking in influence to raise official concern. This article argues that in the closing months of World War II the British government decided to suppress War Commentary because officials feared that its polemic might foment political turmoil and thwart postwar policy agendas as military personnel began to demobilize and reassert their civilian identities. For a short period of time, in an international context of “demobilization crisis”, anarchist anti-militarist polemic became a focus of both state fears of unrest and a public sphere fearing ongoing military regulation of public affairs. Analysing the positions taken by the anarchists and government in the course of the events leading to the prosecution of the editors of War Commentary, the article will draw on “warfarestate” revisions to the traditional “welfare-state” historiography of the period for a more comprehensive view of the context of these events
KL Estimation of the Power Spectrum Parameters from the Angular Distribution of Galaxies in Early SDSS Data
We present measurements of parameters of the 3-dimensional power spectrum of
galaxy clustering from 222 square degrees of early imaging data in the Sloan
Digital Sky Survey. The projected galaxy distribution on the sky is expanded
over a set of Karhunen-Loeve eigenfunctions, which optimize the signal-to-noise
ratio in our analysis. A maximum likelihood analysis is used to estimate
parameters that set the shape and amplitude of the 3-dimensional power
spectrum. Our best estimates are Gamma=0.188 +/- 0.04 and sigma_8L = 0.915 +/-
0.06 (statistical errors only), for a flat Universe with a cosmological
constant. We demonstrate that our measurements contain signal from scales at or
beyond the peak of the 3D power spectrum. We discuss how the results scale with
systematic uncertainties, like the radial selection function. We find that the
central values satisfy the analytically estimated scaling relation. We have
also explored the effects of evolutionary corrections, various truncations of
the KL basis, seeing, sample size and limiting magnitude. We find that the
impact of most of these uncertainties stay within the 2-sigma uncertainties of
our fiducial result.Comment: Fig 1 postscript problem correcte
The Sloan Digital Sky Survey Quasar Catalog I. Early Data Release
We present the first edition of the Sloan Digital Sky Survey (SDSS) Quasar
Catalog. The catalog consists of the 3814 objects (3000 discovered by the SDSS)
in the initial SDSS public data release that have at least one emission line
with a full width at half maximum larger than 1000 km/s, luminosities brighter
than M_i^* = -23, and highly reliable redshifts. The area covered by the
catalog is 494 square degrees; the majority of the objects were found in SDSS
commissioning data using a multicolor selection technique. The quasar redshifts
range from 0.15 to 5.03. For each object the catalog presents positions
accurate to better than 0.2" rms per coordinate, five band (ugriz) CCD-based
photometry with typical accuracy of 0.05 mag, radio and X-ray emission
properties, and information on the morphology and selection method. Calibrated
spectra of all objects in the catalog, covering the wavelength region 3800 to
9200 Angstroms at a spectral resolution of 1800-2100, are also available. Since
the quasars were selected during the commissioning period, a time when the
quasar selection algorithm was undergoing frequent revisions, the sample is not
homogeneous and is not intended for statistical analysis.Comment: 27 pages, 4 figures, 4 tables, accepted by A
Galaxy Clustering in Early SDSS Redshift Data
We present the first measurements of clustering in the Sloan Digital Sky
Survey (SDSS) galaxy redshift survey. Our sample consists of 29,300 galaxies
with redshifts 5,700 km/s < cz < 39,000 km/s, distributed in several long but
narrow (2.5-5 degree) segments, covering 690 square degrees. For the full,
flux-limited sample, the redshift-space correlation length is approximately 8
Mpc/h. The two-dimensional correlation function \xi(r_p,\pi) shows clear
signatures of both the small-scale, ``fingers-of-God'' distortion caused by
velocity dispersions in collapsed objects and the large-scale compression
caused by coherent flows, though the latter cannot be measured with high
precision in the present sample. The inferred real-space correlation function
is well described by a power law, \xi(r)=(r/6.1+/-0.2 Mpc/h)^{-1.75+/-0.03},
for 0.1 Mpc/h < r < 16 Mpc/h. The galaxy pairwise velocity dispersion is
\sigma_{12} ~ 600+/-100 km/s for projected separations 0.15 Mpc/h < r_p < 5
Mpc/h. When we divide the sample by color, the red galaxies exhibit a stronger
and steeper real-space correlation function and a higher pairwise velocity
dispersion than do the blue galaxies. The relative behavior of subsamples
defined by high/low profile concentration or high/low surface brightness is
qualitatively similar to that of the red/blue subsamples. Our most striking
result is a clear measurement of scale-independent luminosity bias at r < 10
Mpc/h: subsamples with absolute magnitude ranges centered on M_*-1.5, M_*, and
M_*+1.5 have real-space correlation functions that are parallel power laws of
slope ~ -1.8 with correlation lengths of approximately 7.4 Mpc/h, 6.3 Mpc/h,
and 4.7 Mpc/h, respectively.Comment: 51 pages, 18 figures. Replaced to match accepted ApJ versio
The Luminosity Function of Galaxies in SDSS Commissioning Data
During commissioning observations, the Sloan Digital Sky Survey (SDSS) has
produced one of the largest existing galaxy redshift samples selected from CCD
images. Using 11,275 galaxies complete to r^* = 17.6 over 140 square degrees,
we compute the luminosity function of galaxies in the r^* band over a range -23
< M < -16 (for h=1). The result is well-described by a Schechter function with
parameters phi_* = 0.0146 +/- 0.0012 h^3 Mpc^{-3}, M_* = -20.83 +/- 0.03, and
alpha = -1.20 +/- 0.03. The implied luminosity density in r^* is j = (2.6 +/-
0.3) x 10^8 h L_sun Mpc^{-3}. The surface brightness selection threshold has a
negligible impact for M < -18. We measure the luminosity function in the u^*,
g^*, i^*, and z^* bands as well; the slope at low luminosities ranges from
alpha=-1.35 to alpha=-1.2. We measure the bivariate distribution of r^*
luminosity with half-light surface brightness, intrinsic color, and morphology.
High surface brightness, red, highly concentrated galaxies are on average more
luminous than low surface brightness, blue, less concentrated galaxies. If we
synthesize results for R-band or b_j-band using the Petrosian magnitudes with
which the SDSS measures galaxy fluxes, we obtain luminosity densities 2.0 times
that found by the Las Campanas Redshift Survey in R and 1.4 times that found by
the Two-degree Field Galaxy Redshift Survey in b_j. We are able to reproduce
the luminosity functions obtained by these surveys if we also mimic their
isophotal limits for defining galaxy magnitudes, which are shallower and more
redshift dependent than the Petrosian magnitudes used by the SDSS. (Abridged)Comment: 49 pages, including 23 figures, accepted by AJ; some minor textual
changes, plus an important change in comparison to LCR
Cosmological parameters from SDSS and WMAP
We measure cosmological parameters using the three-dimensional power spectrum
P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in
combination with WMAP and other data. Our results are consistent with a
``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt,
tensor modes or massive neutrinos. Adding SDSS information more than halves the
WMAP-only error bars on some parameters, tightening 1 sigma constraints on the
Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter
density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on
neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when
dropping prior assumptions about curvature, neutrinos, tensor modes and the
equation of state. Our results are in substantial agreement with the joint
analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive
consistency check with independent redshift survey data and analysis
techniques. In this paper, we place particular emphasis on clarifying the
physical origin of the constraints, i.e., what we do and do not know when using
different data sets and prior assumptions. For instance, dropping the
assumption that space is perfectly flat, the WMAP-only constraint on the
measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to
t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running
tilt, neutrino mass and equation of state in the list of free parameters, many
constraints are still quite weak, but future cosmological measurements from
SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt
figures available at http://www.hep.upenn.edu/~max/sdsspars.htm
The Fifth Data Release of the Sloan Digital Sky Survey
This paper describes the Fifth Data Release (DR5) of the Sloan Digital Sky
Survey (SDSS). DR5 includes all survey quality data taken through June 2005 and
represents the completion of the SDSS-I project (whose successor, SDSS-II will
continue through mid-2008). It includes five-band photometric data for 217
million objects selected over 8000 square degrees, and 1,048,960 spectra of
galaxies, quasars, and stars selected from 5713 square degrees of that imaging
data. These numbers represent a roughly 20% increment over those of the Fourth
Data Release; all the data from previous data releases are included in the
present release. In addition to "standard" SDSS observations, DR5 includes
repeat scans of the southern equatorial stripe, imaging scans across M31 and
the core of the Perseus cluster of galaxies, and the first spectroscopic data
from SEGUE, a survey to explore the kinematics and chemical evolution of the
Galaxy. The catalog database incorporates several new features, including
photometric redshifts of galaxies, tables of matched objects in overlap regions
of the imaging survey, and tools that allow precise computations of survey
geometry for statistical investigations.Comment: ApJ Supp, in press, October 2007. This paper describes DR5. The SDSS
Sixth Data Release (DR6) is now public, available from http://www.sdss.or
The Seventh Data Release of the Sloan Digital Sky Survey
This paper describes the Seventh Data Release of the Sloan Digital Sky Survey
(SDSS), marking the completion of the original goals of the SDSS and the end of
the phase known as SDSS-II. It includes 11663 deg^2 of imaging data, with most
of the roughly 2000 deg^2 increment over the previous data release lying in
regions of low Galactic latitude. The catalog contains five-band photometry for
357 million distinct objects. The survey also includes repeat photometry over
250 deg^2 along the Celestial Equator in the Southern Galactic Cap. A
coaddition of these data goes roughly two magnitudes fainter than the main
survey. The spectroscopy is now complete over a contiguous area of 7500 deg^2
in the Northern Galactic Cap, closing the gap that was present in previous data
releases. There are over 1.6 million spectra in total, including 930,000
galaxies, 120,000 quasars, and 460,000 stars. The data release includes
improved stellar photometry at low Galactic latitude. The astrometry has all
been recalibrated with the second version of the USNO CCD Astrograph Catalog
(UCAC-2), reducing the rms statistical errors at the bright end to 45
milli-arcseconds per coordinate. A systematic error in bright galaxy photometr
is less severe than previously reported for the majority of galaxies. Finally,
we describe a series of improvements to the spectroscopic reductions, including
better flat-fielding and improved wavelength calibration at the blue end,
better processing of objects with extremely strong narrow emission lines, and
an improved determination of stellar metallicities. (Abridged)Comment: 20 pages, 10 embedded figures. Accepted to ApJS after minor
correction
Measurement of Rapidity Distribution for High Mass Drell-Yan ee Pairs at CDF
We report on the first measurement of the rapidity distribution dsigma/dy
over nearly the entire kinematic region of rapidity for e^+e^- pairs in the
Z-boson region of 66116 GeV/c^2.
The data sample consists of 108 pb^{-1} of ppbar collisions at \sqrt{s}=1.8 TeV
taken by the Collider Detector at Fermilab during 1992--1995. The total cross
section in the -boson region is measured to be 252 +- 11 pb. The measured
total cross section and d\sigma/dy are compared with quantum chromodynamics
calculations in leading and higher orders.Comment: 7 pages, 3 figures. Submitted to Physical Review Letter
- …