8,030 research outputs found

    Gamma-ray emission associated with Cluster-scale AGN Outbursts

    Full text link
    Recent observations have revealed the existence of enormously energetic ~10^61 erg AGN outbursts in three relatively distant galaxy clusters. These outbursts have produced bubbles in the intra-cluster medium, apparently supported by pressure from relativistic particles and/or magnetic fields. Here we argue that if > GeV particles are responsible then these particles are very likely protons and nuclei, rather than electrons, and that the gamma-ray emission from these objects, arising from the interactions of these hadrons in the intra-cluster medium, may be marginally detectable with instruments such as GLAST and HESS.Comment: 8 pages, 4 figures, accepted by MNRA

    The role of singletons in S7S^7 compactifications

    Get PDF
    We derive the isometry irrep content of squashed seven-sphere compactifications of eleven-dimensional supergravity, i.e., the left-squashed (LS7LS^7) with N=1{\mathcal N}=1 and right-squashed (RS7RS^7) with N=0{\mathcal N}=0 supersymmetry, in a manner completely independent of the round sphere. Then we compare this result with the spectrum obtained by Higgsing the round sphere spectrum. This way we discover features of the spectra which makes it possible to argue that the only way the round spectrum can be related by a Higgs mechanism to the one of LS7LS^7 is if the singletons are included in the round sphere spectrum. For this to work also in the RS7RS^7 case it seems that the gravitino of the LS7LS^7 spectrum must be replaced by a fermionic singleton present in the RS7RS^7 spectrum.Comment: 24 pages including appendix with 12 figure, v2 minor typos correcte

    Brane Worlds in Collision

    Get PDF
    We obtain an exact solution of the supergravity equations of motion in which the four-dimensional observed universe is one of a number of colliding D3-branes in a Calabi-Yau background. The collision results in the ten-dimensional spacetime splitting into disconnected regions, bounded by curvature singularities. However, near the D3-branes the metric remains static during and after the collision. We also obtain a general class of solutions representing pp-brane collisions in arbitrary dimensions, including one in which the universe ends with the mutual annihilation of a positive-tension and negative-tension 3-brane.Comment: RevTex, 4 pages, 1 figure, typos and minor errors correcte

    Non-Abelian pp-waves in D=4 supergravity theories

    Full text link
    The non-Abelian plane waves, first found in flat spacetime by Coleman and subsequently generalized to give pp-waves in Einstein-Yang-Mills theory, are shown to be 1/2 supersymmetric solutions of a wide variety of N=1 supergravity theories coupled to scalar and vector multiplets, including the theory of SU(2) Yang-Mills coupled to an axion \sigma and dilaton \phi recently obtained as the reduction to four-dimensions of the six-dimensional Salam-Sezgin model. In this latter case they provide the most general supersymmetric solution. Passing to the Riemannian formulation of this theory we show that the most general supersymmetric solution may be constructed starting from a self-dual Yang-Mills connection on a self-dual metric and solving a Poisson equation for e^\phi. We also present the generalization of these solutions to non-Abelian AdS pp-waves which allow a negative cosmological constant and preserve 1/4 of supersymmetry.Comment: Latex, 1+12 page

    General Very Special Relativity is Finsler Geometry

    Get PDF
    We ask whether Cohen and Glashow's Very Special Relativity model for Lorentz violation might be modified, perhaps by quantum corrections, possibly producing a curved spacetime with a cosmological constant. We show that its symmetry group ISIM(2) does admit a 2-parameter family of continuous deformations, but none of these give rise to non-commutative translations analogous to those of the de Sitter deformation of the Poincar\'e group: spacetime remains flat. Only a 1-parameter family DISIM_b(2) of deformations of SIM(2) is physically acceptable. Since this could arise through quantum corrections, its implications for tests of Lorentz violations via the Cohen-Glashow proposal should be taken into account. The Lorentz-violating point particle action invariant under DISIM_b(2) is of Finsler type, for which the line element is homogeneous of degree 1 in displacements, but anisotropic. We derive DISIM_b(2)-invariant wave equations for particles of spins 0, 1/2 and 1. The experimental bound, ∣b∣<10−26|b|<10^{-26}, raises the question ``Why is the dimensionless constant bb so small in Very Special Relativity?''Comment: 4 pages, minor corrections, references adde

    Effect of excited states and applied magnetic fields on the measured hole mobility in an organic semiconductor

    Get PDF
    Copyright 2010 by the American Physical Society. Article is available at

    IRAC Excess in Distant Star-Forming Galaxies: Tentative Evidence for the 3.3μ\mum Polycyclic Aromatic Hydrocarbon Feature ?

    Get PDF
    We present evidence for the existence of an IRAC excess in the spectral energy distribution (SED) of 5 galaxies at 0.6<z<0.9 and 1 galaxy at z=1.7. These 6 galaxies, located in the Great Observatories Origins Deep Survey field (GOODS-N), are star forming since they present strong 6.2, 7.7, and 11.3 um polycyclic aromatic hydrocarbon (PAH) lines in their Spitzer IRS mid-infrared spectra. We use a library of templates computed with PEGASE.2 to fit their multiwavelength photometry and derive their stellar continuum. Subtraction of the stellar continuum enables us to detect in 5 galaxies a significant excess in the IRAC band pass where the 3.3 um PAH is expected. We then assess if the physical origin of the IRAC excess is due to an obscured active galactic nucleus (AGN) or warm dust emission. For one galaxy evidence of an obscured AGN is found, while the remaining four do not exhibit any significant AGN activity. Possible contamination by warm dust continuum of unknown origin as found in the Galactic diffuse emission is discussed. The properties of such a continuum would have to be different from the local Universe to explain the measured IRAC excess, but we cannot definitively rule out this possibility until its origin is understood. Assuming that the IRAC excess is dominated by the 3.3 um PAH feature, we find good agreement with the observed 11.3 um PAH line flux arising from the same C-H bending and stretching modes, consistent with model expectations. Finally, the IRAC excess appears to be correlated with the star-formation rate in the galaxies. Hence it could provide a powerful diagnostic for measuring dusty star formation in z>3 galaxies once the mid-infrared spectroscopic capabilities of the James Webb Space Telescope become available.Comment: 25 pages, 4 figures, accepted by Ap

    Development of gas-to-gas lift pad dynamic seals, volumes 1 and 2

    Get PDF
    Dynamic tests were performed on self acting (hydrodynamic) carbon face rotary shaft seals to assess their potential, relative to presently used labyrinth seals, for improving performance of aircraft gas turbine engines by reducing air leakage flow rate at compressor end seal locations. Three self acting bearing configurations, designed to supply load support at the interface of the stationary carbon seal and rotating seal race, were tested. Two configurations, the shrouded taper and shrouded flat step, were incorporated on the face of the stationary carbon seal element. The third configuration, inward pumping spiral grooves, was incorporated on the hard faced surface of the rotating seal race. Test results demonstrated seal leakage air flow rates from 75 to 95% lower that can be achieved with best state-of-the-art labyrinth designs and led to identification of the need for a more geometrically stable seal design configuration which is presently being manufactured for subsequent test evaluation
    • …
    corecore