95 research outputs found
Plasmonic Hepatitis B Biosensor for the Analysis of Clinical Saliva
A biosensor for the detection of hepatitis B antibodies in clinical saliva was developed. Compared to conventional analysis of blood serum, it offers the advantage of noninvasive collection of samples. Detection of biomarkers in saliva imposes two major challenges associated with the low analyte concentration and increased surface fouling. The detection of minute amounts of hepatitis B antibodies was performed by plasmonically amplified fluorescence sandwich immunoassay. To have access to specific detection, we prevented the nonspecific adsorption of biomolecules present in saliva by brushes of poly[(N-(2-hydroxypropyl) methacrylamide)-co-(carboxybetaine methacrylamide)] grafted from the gold sensor surface and post modified with hepatitis B surface antigen. Obtained results were validated against the response measured with ELISA at a certified laboratory using serum from the same patients. © 201
Recommended from our members
Plasmonic Hepatitis B Biosensor for the Analysis of Clinical Saliva
A biosensor for the detection of hepatitis B antibodies in clinical saliva was developed. Compared to conventional analysis of blood serum, it offers the advantage of noninvasive collection of samples. Detection of biomarkers in saliva imposes two major challenges associated with the low analyte concentration and increased surface fouling. The detection of minute amounts of hepatitis B antibodies was performed by plasmonically amplified fluorescence sandwich immunoassay. To have access to specific detection, we prevented the nonspecific adsorption of biomolecules present in saliva by brushes of poly[(N-(2-hydroxypropyl) methacrylamide)-co-(carboxybetaine methacrylamide)] grafted from the gold sensor surface and post modified with hepatitis B surface antigen. Obtained results were validated against the response measured with ELISA at a certified laboratory using serum from the same patients. © 201
Functionalized porous silica&maghemite core-shell nanoparticles for applications in medicine: design, synthesis, and immunotoxicity
Aim To determine cytotoxicity and effect of silica-coated
magnetic nanoparticles (MNPs) on immune response, in
particular lymphocyte proliferative activity, phagocytic activity,
and leukocyte respiratory burst and in vitro production
of interleukin-6 (IL-6) and 8 (IL-8), interferon-gamma
(IFN-γ), tumor necrosis factor-alpha (TNF-α), and granulocyte
macrophage colony stimulating factor (GM-CSF).
Methods Maghemite was prepared by coprecipitation of
iron salts with ammonia, oxidation with NaOCl and modified
by tetramethyl orthosilicate and aminosilanes. Particles
were characterized by transmission electron microscopy
(TEM), dynamic light scattering (DLS), Fourier-transform infrared
(FTIR), and X-ray photoelectron spectroscopy (XPS).
Cytotoxicity and lymphocyte proliferative activity were
assessed using [3H]-thymidine incorporation into DNA of
proliferating human peripheral blood cells. Phagocytic activity
and leukocyte respiratory burst were measured by
flow cytometry; cytokine levels in cell supernatants were
determined by ELISA.
Results γ-Fe2O3&SiO2-NH2 MNPs were 13 nm in size. According
to TEM, they were localized in the cell cytoplasm
and extracellular space. Neither cytotoxic effect nor significant
differences in T-lymphocyte and T-dependent Bcell
proliferative response were found at particle concentrations
0.12-75 μg/cm2 after 24, 48, and 72 h incubation.
Significantly increased production of IL-6 and 8, and GMCSF
cytokines was observed in the cells treated with 3, 15,
and 75 μg of particles/cm2 for 48 h and stimulated with
pokeweed mitogen (PHA). No significant changes in TNF-α
and IFN-γ production were observed. MNPs did not affect
phagocytic activity of monocytes and granulocytes when
added to cells for 24 and 48 h. Phagocytic respiratory burst
was significantly enhanced in the cultures exposed to 75
μg MNPs/cm2 for 48 h.
Conclusions The cytotoxicity and in vitro immunotoxicity
were found to be minimal in the newly developed porous
core-shell γ-Fe2O3&SiO2-NH2 magnetic nanoparticles
Characterization of ultra-thin polymer films on solid substrates using different physical techniques
The presented doctoral research was aimed at preparation and characterization of ultra thin polymer films on solid substrates using different physical techniques. Each of these physical techniques probes selectively different characteristics of the films. While some of the techniques are strong in the predetermination of some unique properties of the layers, they might be limited and give no specific/conclusive information about some other important characteristics. Therefore, only the combination of the techniques provides a profound picture of the thickness, architecture, composition and functionality of the films/layers. This combined characterization approach elucidates in details the physical characteristics and the mechanisms responsible for the unique behavior of different polymer films/layers in the application that they are intended for. In the thesis, of particular interest were films of high biomedical, biotechnological and tissue engineering importance, such as: 1. poly(lactide) films formed by grafting "from-" a silanized alacrite thin films (L605 Co-based super alloy), 2. polydopamine (PDA) films that could serve as substrate independent mod- ification platform for further surface modification steps, 3. poly(ethylene oxide)films formed by "grafting to-" PDA modified surfaces, 4...
Ultratenké polymerní filmy na pevných površích: studium fyzikálními metodami
The presented doctoral research was aimed at preparation and characterization of ultra thin polymer films on solid substrates using different physical techniques. Each of these physical techniques probes selectively different characteristics of the films. While some of the techniques are strong in the predetermination of some unique properties of the layers, they might be limited and give no specific/conclusive information about some other important characteristics. Therefore, only the combination of the techniques provides a profound picture of the thickness, architecture, composition and functionality of the films/layers. This combined characterization approach elucidates in details the physical characteristics and the mechanisms responsible for the unique behavior of different polymer films/layers in the application that they are intended for. In the thesis, of particular interest were films of high biomedical, biotechnological and tissue engineering importance, such as: 1. poly(lactide) films formed by grafting "from-" a silanized alacrite thin films (L605 Co-based super alloy), 2. polydopamine (PDA) films that could serve as substrate independent mod- ification platform for further surface modification steps, 3. poly(ethylene oxide)films formed by "grafting to-" PDA modified surfaces, 4....Cílem disertační práce je příprava ultratenkých polymerních filmů na pevných substrátech a jejich charakterizace pomocí fyzikálních metod. Fyzikální techniky, které jsou použity v této práci, selektivně popisují jednotlivé charakteristiky studovaných filmů. Některé z těchto technik jsou více specifické pro stanovení některých vlastností povrchů, avšak neposkytují informace o jiných důležitých vlastnostech těchto systémů. Proto pouze kombinací jednotlivých metod lze získat celkový pohled na architekturu, složení a funkci filmů a jejich vrstev. Tento kombinovaný přístup umožňuje získat hodnoty jednotlivých charakteristik a současně osvětluje fyzikální mechanizmy zodpovědné za chování zkoumaných systémů, což je důležité pro jejich další aplikace. Konkrétní polymerní filmy, jimiž se tato práce zabývá, reprezentují rozdílné typy systémů, které jsou významné pro aplikace v biomedicíně, biotechnologiích a tkáňovém inženýrství. Lze je zařadit do čtyř skupin: 1. Filmy polylaktidu vytvářené roubováním z tenkých filmů silanizovaného alakritu. 2. Polydopaminové filmy, které lze využít jako vhodnou platformu pro další modifikaci povrchů. 3. Polyethylenoxidové filmy roubované na povrchy potažené polydopaminem. 4. Poly(ω-methoxy-oligo(ethylene oxide) methacrylatovové), poly(ω-hydroxy-oligo(ethylene oxide)...Department of Physical and Macromolecular ChemistryKatedra fyzikální a makromol. chemieFaculty of SciencePřírodovědecká fakult
- …