324 research outputs found

    The representation of cognates and interlingual homographs in the bilingual lexicon

    Get PDF
    Cognates and interlingual homographs are words that exist in multiple languages. Cognates, like “wolf” in Dutch and English, also carry the same meaning. Interlingual homographs do not: the word “angel” in English refers to a spiritual being, but in Dutch to the sting of a bee. The six experiments included in this thesis examined how these words are represented in the bilingual mental lexicon. Experiment 1 and 2 investigated the issue of task effects on the processing of cognates. Bilinguals often process cognates more quickly than single-language control words (like “carrot”, which exists in English but not Dutch). These experiments showed that the size of this cognate facilitation effect depends on the other types of stimuli included in the task. These task effects were most likely due to response competition, indicating that cognates are subject to processes of facilitation and inhibition both within the lexicon and at the level of decision making. Experiment 3 and 4 examined whether seeing a cognate or interlingual homograph in one’s native language affects subsequent processing in one’s second language. This method was used to determine whether non-identical cognates share a form representation. These experiments were inconclusive: they revealed no effect of cross-lingual long-term priming. Most likely this was because a lexical decision task was used to probe an effect that is largely semantic in nature. Given these caveats to using lexical decision tasks, two final experiments used a semantic relatedness task instead. Both experiments revealed evidence for an interlingual homograph inhibition effect but no cognate facilitation effect. Furthermore, the second experiment found evidence for a small effect of cross-lingual long-term priming. After comparing these findings to the monolingual literature on semantic ambiguity resolution, this thesis concludes that it is necessary to explore the viability of a distributed connectionist account of the bilingual mental lexicon

    Cross-lingual priming of cognates and interlingual homographs from L2 to L1

    Get PDF
    Many word forms exist in multiple languages, and can have either the same meaning (cognates) or a different meaning (interlingual homographs). Previous experiments have shown that processing of interlingual homographs in a bilingual’s second language is slowed down by recent experience with these words in the bilingual’s native language, while processing of cognates can be speeded up (Poort et al., 2016; Poort & Rodd, 2019a). The current experiment replicated Poort and Rodd’s (2019a) Experiment 2 but switched the direction of priming: Dutch–English bilinguals (n = 106) made Dutch semantic relatedness judgements to probes related to cognates (n = 50), interlingual homographs (n = 50) and translation equivalents (n = 50) they had seen 15 minutes previously embedded in English sentences. The current experiment is the first to show that a single encounter with an interlingual homograph in one’s second language can also affect subsequent processing in one’s native language. Cross-lingual priming did not affect the cognates. The experiment also extended Poort and Rodd (2019a)’s finding of a large interlingual homograph inhibition effect in a semantic relatedness task in the participants’ L2 to their L1, but again found no evidence for a cognate facilitation effect in a semantic relatedness task. These findings extend the growing literature that emphasises the high level of interaction in a bilingual’s mental lexicon, by demonstrating the influence of L2 experience on the processing of L1 words. Data, scripts, materials and pre-registration available via https://osf.io/2swyg/?view_only=b2ba2e627f6f4eaeac87edab2b59b236

    The cognate facilitation effect in bilingual lexical decision is influenced by stimulus list composition

    Get PDF
    Cognates share their form and meaning across languages: “winter” in English means the same as “winter” in Dutch. Research has shown that bilinguals process cognates more quickly than words that exist in one language only (e.g. “ant” in English). This finding is taken as strong evidence for the claim that bilinguals have one integrated lexicon and that lexical access is language non-selective. Two English lexical decision experiments with Dutch–English bilinguals investigated whether the cognate facilitation effect is influenced by stimulus list composition. In Experiment 1, the ‘standard’ version, which included only cognates, English control words and regular non-words, showed significant cognate facilitation (31 ms). In contrast, the ‘mixed’ version, which also included interlingual homographs, pseudohomophones (instead of regular non-words) and Dutch-only words, showed a significantly different profile: a non-significant disadvantage for the cognates (8 ms). Experiment 2 examined the specific impact of these three additional stimuli types and found that only the inclusion of Dutch words significantly reduced the cognate facilitation effect. Additional exploratory analyses revealed that, when the preceding trial was a Dutch word, cognates were recognised up to 50 ms more slowly than English controls. We suggest that when participants must respond ‘no’ to non-target language words, competition arises between the ‘yes’- and ‘no’-responses associated with the two interpretations of a cognate, which (partially) cancels out the facilitation that is a result of the cognate's shared form and meaning. We conclude that the cognate facilitation effect is a real effect that originates in the lexicon, but that cognates can be subject to competition effects outside the lexicon

    Studies of cross-lingual long-term priming

    Get PDF
    Poort, Warren and Rodd (2016) showed that bilinguals profit from recent experience with an identical cognate in their native language when they encounter the same word in their second language. We conducted two experiments employing the same cross-lingual long-term priming paradigm to determine whether this is also the case for non-identical cognates, as this would indicate they share an orthographic representation in the bilingual lexicon. In Experiment 1, Dutch–English bilinguals read Dutch sentences containing identical cognates (e.g. “winter”–“winter”), non-identical cognates (e.g. “baard”–“beard”) or the Dutch translations (e.g. “fiets”) of English control words (e.g. “bike”). These words were presented again in an English lexical decision task approximately 19 minutes later. The analysis revealed only weak evidence, based both on p-values and Bayes factors, for a small 6-9 ms facilitative priming effect. Experiment 2 aimed to determine whether including interlingual homographs (e.g. “angel”–“angel”) in the experiment modulates the size of the priming effect. This time, the analysis revealed no evidence for a priming effect, either based on p-values or Bayes factors, in either version of the experiment for either the cognates or the interlingual homographs. In line with previous findings (Poort & Rodd, 2017, May 9), we did find strong evidence for an interlingual homograph inhibition effect and no evidence for a cognate facilitation effect. We conclude that, since the cross-lingual long-term priming effect is largely semantic in nature, the lexical decision tasks we used were not sensitive enough to detect an effect of priming

    A database of Dutch–English cognates, interlingual homographs and translation equivalents

    Get PDF
    To investigate the structure of the bilingual mental lexicon, researchers in the field of bilingualism often use words that exist in multiple languages: cognates (which have the same meaning) and interlingual homographs (which have a different meaning). A high proportion of these studies have investigated language processing in Dutch–English bilinguals. Despite the abundance of research using such materials, few studies exist that have validated such materials. We conducted two rating experiments in which Dutch–English bilinguals rated the meaning, spelling and pronunciation similarity of pairs of Dutch and English words. On the basis of these results, we present a new database of Dutch–English identical cognates (e.g. “wolf”–“wolf”; n = 58), non-identical cognates (e.g. “kat”–“cat”; n = 74), interlingual homographs (e.g. “angel”–“angel”; n = 72) and translation equivalents (e.g. “wortel”–“carrot”; n = 78). The database can be accessed at http://osf.io/tcdxb/

    Recent experience with cognates and interlingual homographs in one language affects subsequent processing in another language

    Get PDF
    This experiment shows that recent experience in one language influences subsequent processing of the same word-forms in a different language. Dutch–English bilinguals read Dutch sentences containing Dutch–English cognates and interlingual homographs, which were presented again 16 minutes later in isolation in an English lexical decision task. Priming produced faster responses for the cognates but slower responses for the interlingual homographs. These results show that language switching can influence bilingual speakers at the level of individual words, and require models of bilingual word recognition (e.g., BIA+) to allow access to word meanings to be modulated by recent experience

    Onderzoeksprogramma Supply Chain Management : strategie voor 2002

    Get PDF

    Submeter mapping of methane seeps by ROV observations and measurements at the Hikurangi Margin, New Zeeland

    Get PDF
    During R.V. Sonne cruise SO191-3, part of the "New (Zealand Cold) Vents" expedition, RCMG deployed their CHEROKEE ROV "Genesis" on the Hikurangi Margin. This accretionary margin, on the east coast of New Zealand, is related to the subduction of the Pacific Plate under the Australian Plate. Several cold seep locations as well as an extensive BSR, indicating the presence of gas hydrates, have been found at this margin. The aim of the ROV-work were to precisely localize active methane seeps, to conduct detailed visual observations of the seep structures and activity, and to perform measurements of physical properties and collect samples at and around the seep locations. The ROV allowed first ever visual observations of bubble-releasing seeps at the Hikurangi Margin. Seeps were observed at Faure Site and LM-3 in the Rock Garden area, at a flat to moderately undulating sea floor where soft sediments alternate with carbonate platforms. Bubble-releasing activity was very variable in time, with periods of almost non-activity (5 bubbles/second) alternating with periods of violent outbursts (190 bubbles/second). Bubbles sizes ranged from less than 5 mm to more than 20 mm. At Faure Site, bubble release was monitored over a period of 20 minutes, resulting in the observation of 6 outbursts, each lasting 1 minute at a 3 minute interval. These violent outbursts were accompanied by the displacement and resuspension of sediment grains and the formation of small depressions showing what is possibly an initial stage of pockmark formation. At the LM-3 site only some small bubble seeps were observed near a large carbonate platform covered by Bathymodiolus mussels, Calyptogena shells and tube worms. Sediment-temperature measurements, in both areas, were largely comparable with the bottom-water temperature except at LM-3, at a site densely populated by polychaetes, where anomalous low sediment-temperature was measured. Overall, both seep areas are very confined in space and bottom-water sampling revealed that the released methane has a microbial signature

    Implementation of a mobile 0.15-T intraoperative MR system in pediatric neuro-oncological surgery: feasibility and correlation with early postoperative high-field strength MRI

    Get PDF
    INTRODUCTION: We analyze our preliminary experience using the PoleStar N20 mobile intraoperative MR (iMR) system as an adjunct for pediatric brain tumor resection. METHODS: We analyzed 11 resections in nine children between 1 month and 17 years old. After resection, we acquired iMR scans to detect residual tumor and update neuronavigation. We compared final iMR interpretation by the neurosurgeon with early postoperative MR interpretation by a neuroradiologist. RESULTS: Patient positioning was straightforward, and image quality (T1 7-min 4-mm sequences) sufficient in all cases. In five cases, contrast enhancement suspect for residual tumor was noted on initial postresection iMR images. In one case, a slight discrepancy with postoperative imaging after 3 months was no longer visible after 1 year. No serious perioperative adverse events related to the PoleStar N20 were encountered, except for transient shoulder pain in two. CONCLUSIONS: Using the PoleStar N20 iMR system is technically feasible and safe for both supra- and infratentorial tumor resections in children of all ages. Their small head and shoulders favor positioning in the magnet bore and allow the field of view to cover more than the area of primary interest, e.g., the ventricles in an infratentorial case. Standard surgical equipment may be used without significant limitations. In this series, the use of iMR leads to an increased extent of tumor resection in 45 % of cases. Correlation between iMR and early postoperative MR is excellent, provided image quality is optimal and interpretation is carefully done by someone sufficiently familiar with the system
    • 

    corecore